Ambient Denoising Diffusion Generative Adversarial Networks for Establishing Stochastic Object Models from Noisy Image Data
- URL: http://arxiv.org/abs/2501.19094v1
- Date: Fri, 31 Jan 2025 12:40:43 GMT
- Title: Ambient Denoising Diffusion Generative Adversarial Networks for Establishing Stochastic Object Models from Noisy Image Data
- Authors: Xichen Xu, Wentao Chen, Weimin Zhou,
- Abstract summary: We propose an augmented DDGAN architecture, Ambient DDGAN (ADDGAN) for learning realistic SOMs from noisy image data.
The ability of the proposed ADDGAN to learn realistic SOMs from noisy image data is demonstrated.
- Score: 4.069144210024564
- License:
- Abstract: It is widely accepted that medical imaging systems should be objectively assessed via task-based image quality (IQ) measures that ideally account for all sources of randomness in the measured image data, including the variation in the ensemble of objects to be imaged. Stochastic object models (SOMs) that can randomly draw samples from the object distribution can be employed to characterize object variability. To establish realistic SOMs for task-based IQ analysis, it is desirable to employ experimental image data. However, experimental image data acquired from medical imaging systems are subject to measurement noise. Previous work investigated the ability of deep generative models (DGMs) that employ an augmented generative adversarial network (GAN), AmbientGAN, for establishing SOMs from noisy measured image data. Recently, denoising diffusion models (DDMs) have emerged as a leading DGM for image synthesis and can produce superior image quality than GANs. However, original DDMs possess a slow image-generation process because of the Gaussian assumption in the denoising steps. More recently, denoising diffusion GAN (DDGAN) was proposed to permit fast image generation while maintain high generated image quality that is comparable to the original DDMs. In this work, we propose an augmented DDGAN architecture, Ambient DDGAN (ADDGAN), for learning SOMs from noisy image data. Numerical studies that consider clinical computed tomography (CT) images and digital breast tomosynthesis (DBT) images are conducted. The ability of the proposed ADDGAN to learn realistic SOMs from noisy image data is demonstrated. It has been shown that the ADDGAN significantly outperforms the advanced AmbientGAN models for synthesizing high resolution medical images with complex textures.
Related papers
- Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis [55.959002385347645]
Scaling by training on large datasets has been shown to enhance the quality and fidelity of image generation and manipulation with diffusion models.
Latent Drifting enables diffusion models to be conditioned for medical images fitted for the complex task of counterfactual image generation.
Our results demonstrate significant performance gains in various scenarios when combined with different fine-tuning schemes.
arXiv Detail & Related papers (2024-12-30T01:59:34Z) - A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
Deep neural networks have shown great potential for reconstructing high-fidelity images from undersampled measurements.
Our model is based on neural operators, a discretization-agnostic architecture.
Our inference speed is also 1,400x faster than diffusion methods.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - SAR Image Synthesis with Diffusion Models [0.0]
diffusion models (DMs) have become a popular method for generating synthetic data.
In this work, a specific type of DMs, namely denoising diffusion probabilistic model (DDPM) is adapted to the SAR domain.
We show that DDPM qualitatively and quantitatively outperforms state-of-the-art GAN-based methods for SAR image generation.
arXiv Detail & Related papers (2024-05-13T14:21:18Z) - A Domain Translation Framework with an Adversarial Denoising Diffusion
Model to Generate Synthetic Datasets of Echocardiography Images [0.5999777817331317]
We introduce a framework to create echocardiography images suitable to be used for clinical research purposes.
For several domain translation operations, the results verified that such generative model was able to synthesize high quality image samples.
arXiv Detail & Related papers (2024-03-07T15:58:03Z) - On quantifying and improving realism of images generated with diffusion [50.37578424163951]
We propose a metric, called Image Realism Score (IRS), computed from five statistical measures of a given image.
IRS is easily usable as a measure to classify a given image as real or fake.
We experimentally establish the model- and data-agnostic nature of the proposed IRS by successfully detecting fake images generated by Stable Diffusion Model (SDM), Dalle2, Midjourney and BigGAN.
Our efforts have also led to Gen-100 dataset, which provides 1,000 samples for 100 classes generated by four high-quality models.
arXiv Detail & Related papers (2023-09-26T08:32:55Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
Colonoscopy analysis is essential for assisting clinical diagnosis and treatment.
The scarcity of annotated data limits the effectiveness and generalization of existing methods.
We propose an Adaptive Refinement Semantic Diffusion Model (ArSDM) to generate colonoscopy images that benefit the downstream tasks.
arXiv Detail & Related papers (2023-09-03T07:55:46Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
We present a new type of discriminator, the segmentor, to accurately locate the lesions and improve the visual quality of pseudo-healthy images.
We apply the generated images into medical image enhancement and utilize the enhanced results to cope with the low contrast problem.
Comprehensive experiments on the T2 modality of BraTS demonstrate that the proposed method substantially outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2022-03-29T08:41:17Z) - Learning stochastic object models from medical imaging measurements by
use of advanced AmbientGANs [7.987904193401004]
generative adversarial networks (GANs) hold potential for such tasks.
Deep generative neural networks, such as generative adversarial networks (GANs) hold potential for such tasks.
In this work, a modified AmbientGAN training strategy is proposed that is suitable for modern progressive or multi-resolution training approaches.
arXiv Detail & Related papers (2021-06-27T21:46:23Z) - Learning stochastic object models from medical imaging measurements
using Progressively-Growing AmbientGANs [14.501812971529137]
An important source of variability that can significantly limit observer performance is variation in the objects to-be-imaged.
It is desirable to establish SOMs from experimental imaging measurements acquired by use of a well-characterized imaging system.
Deep generative neural networks, such as generative adversarial networks (GANs) hold great potential for this task.
arXiv Detail & Related papers (2020-05-29T18:45:37Z) - Progressively-Growing AmbientGANs For Learning Stochastic Object Models
From Imaging Measurements [14.501812971529137]
objective optimization of medical imaging systems requires full characterization of all sources of randomness in the measured data.
We propose establishing an object model (SOM) that describes the variability in the class of objects to-be-imaged.
Because medical imaging systems record imaging measurements that are noisy and indirect representations of object properties, GANs cannot be directly applied to establish models of objects to-be-imaged.
arXiv Detail & Related papers (2020-01-26T21:33:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.