Genetic AI: Evolutionary Games for ab initio dynamic Multi-Objective Optimization
- URL: http://arxiv.org/abs/2501.19113v2
- Date: Thu, 08 May 2025 12:13:52 GMT
- Title: Genetic AI: Evolutionary Games for ab initio dynamic Multi-Objective Optimization
- Authors: Philipp Wissgott,
- Abstract summary: Genetic AI is a novel method for multi-objective optimization without external parameters or predefined weights.<n>We present four evolutionary strategies: Dominant, Altruistic, Balanced and Selfish.<n>We show the universality of the approach on two decision problems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce Genetic AI, a novel method for multi-objective optimization without external parameters or predefined weights. The method can be applied to all problems that can be formulated in matrix form and allows for a data-less training of AI models. Without employing predefined rules or training data, Genetic AI first converts the input data into genes and organisms. In a simulation from first principles, these genes and organisms compete for fitness, where their behavior is governed by universal evolutionary strategies. We present four evolutionary strategies: Dominant, Altruistic, Balanced and Selfish and show how a linear combination can be employed in a fully self-consistent evolutionary game. Investigating fitness and evolutionary stable equilibriums, Genetic AI helps solving optimization problems with a set of predefined, discrete solutions that change dynamically. We show the universality of the approach on two decision problems.
Related papers
- Reparameterized LLM Training via Orthogonal Equivalence Transformation [54.80172809738605]
We present POET, a novel training algorithm that uses Orthogonal Equivalence Transformation to optimize neurons.<n>POET can stably optimize the objective function with improved generalization.<n>We develop efficient approximations that make POET flexible and scalable for training large-scale neural networks.
arXiv Detail & Related papers (2025-06-09T17:59:34Z) - GRAPE: Heterogeneous Graph Representation Learning for Genetic Perturbation with Coding and Non-Coding Biotype [51.58774936662233]
Building gene regulatory networks (GRN) is essential to understand and predict the effects of genetic perturbations.<n>In this work, we leverage pre-trained large language model and DNA sequence model to extract features from gene descriptions and DNA sequence data.<n>We introduce gene biotype information for the first time in genetic perturbation, simulating the distinct roles of genes with different biotypes in regulating cellular processes.
arXiv Detail & Related papers (2025-05-06T03:35:24Z) - Strategic priorities for transformative progress in advancing biology with proteomics and artificial intelligence [54.14779179869007]
We highlight key areas where AI is driving innovation, from data analysis to new biological insights.
These include developing an AI-friendly ecosystem for data generation, sharing, and analysis.
arXiv Detail & Related papers (2025-02-21T13:20:33Z) - GENERator: A Long-Context Generative Genomic Foundation Model [66.46537421135996]
We present GENERator, a generative genomic foundation model featuring a context length of 98k base pairs (bp) and 1.2B parameters.
Trained on an expansive dataset comprising 386B bp of DNA, the GENERator demonstrates state-of-the-art performance across both established and newly proposed benchmarks.
It also shows significant promise in sequence optimization, particularly through the prompt-responsive generation of enhancer sequences with specific activity profiles.
arXiv Detail & Related papers (2025-02-11T05:39:49Z) - Learning Evolution via Optimization Knowledge Adaptation [50.280704114978384]
Evolutionary algorithms (EAs) maintain populations through evolutionary operators to discover solutions for complex tasks.<n>We introduce an Optimization Knowledge Adaptation Evolutionary Model (OKAEM) to enhance its optimization capabilities.<n>OKAEM exploits prior knowledge for significant performance gains across various knowledge transfer settings.<n>It is capable of emulating principles of natural selection and genetic recombination.
arXiv Detail & Related papers (2025-01-04T05:35:21Z) - Weighted Diversified Sampling for Efficient Data-Driven Single-Cell Gene-Gene Interaction Discovery [56.622854875204645]
We present an innovative approach utilizing data-driven computational tools, leveraging an advanced Transformer model, to unearth gene-gene interactions.
A novel weighted diversified sampling algorithm computes the diversity score of each data sample in just two passes of the dataset.
arXiv Detail & Related papers (2024-10-21T03:35:23Z) - Semantically Rich Local Dataset Generation for Explainable AI in Genomics [0.716879432974126]
Black box deep learning models trained on genomic sequences excel at predicting the outcomes of different gene regulatory mechanisms.
We propose using Genetic Programming to generate datasets by evolving perturbations in sequences that contribute to their semantic diversity.
arXiv Detail & Related papers (2024-07-03T10:31:30Z) - A Guide to Tracking Phylogenies in Parallel and Distributed Agent-based Evolution Models [0.0]
In silico work with agent-based models provides an opportunity to collect high-quality records of ancestry relationships among simulated agents.
Existing work generally tracks lineages directly, yielding an exact phylogenetic record of evolutionary history.
Post hoc estimation is akin to how bioinformaticians build phylogenies by assessing genetic similarities between organisms.
arXiv Detail & Related papers (2024-05-16T15:27:51Z) - Causal machine learning for single-cell genomics [94.28105176231739]
We discuss the application of machine learning techniques to single-cell genomics and their challenges.
We first present the model that underlies most of current causal approaches to single-cell biology.
We then identify open problems in the application of causal approaches to single-cell data.
arXiv Detail & Related papers (2023-10-23T13:35:24Z) - Fast and Functional Structured Data Generators Rooted in Out-of-Equilibrium Physics [44.97217246897902]
We address the challenge of using energy-based models to produce high-quality, label-specific data in structured datasets.
Traditional training methods encounter difficulties due to inefficient Markov chain Monte Carlo mixing.
We use a novel training algorithm that exploits non-equilibrium effects.
arXiv Detail & Related papers (2023-07-13T15:08:44Z) - Phylogeny-informed fitness estimation [58.720142291102135]
We propose phylogeny-informed fitness estimation, which exploits a population's phylogeny to estimate fitness evaluations.
Our results indicate that phylogeny-informed fitness estimation can mitigate the drawbacks of down-sampled lexicase.
This work serves as an initial step toward improving evolutionary algorithms by exploiting runtime phylogenetic analysis.
arXiv Detail & Related papers (2023-06-06T19:05:01Z) - Discovering Attention-Based Genetic Algorithms via Meta-Black-Box
Optimization [13.131971623143622]
We discover entirely new genetic algorithms in a data-driven fashion.
We parametrize selection and mutation rate adaptation as cross- and self-attention modules.
The learned algorithm can be applied to previously unseen optimization problems, search dimensions & evaluation budgets.
arXiv Detail & Related papers (2023-04-08T12:14:15Z) - Toward Physically Plausible Data-Driven Models: A Novel Neural Network
Approach to Symbolic Regression [2.7071541526963805]
This paper proposes a novel neural network-based symbolic regression method.
It constructs physically plausible models based on even very small training data sets and prior knowledge about the system.
We experimentally evaluate the approach on four test systems: the TurtleBot 2 mobile robot, the magnetic manipulation system, the equivalent resistance of two resistors in parallel, and the longitudinal force of the anti-lock braking system.
arXiv Detail & Related papers (2023-02-01T22:05:04Z) - The Effect of Epigenetic Blocking on Dynamic Multi-Objective
Optimisation Problems [1.4502611532302039]
Epigenetic mechanisms allow quick non- or partially-genetic adaptations to environmental changes.
This paper asks if the advantages that epigenetic inheritance provide in the natural world are replicated in dynamic multi-objective problems.
arXiv Detail & Related papers (2022-11-25T16:33:05Z) - Training and Evaluation of Deep Policies using Reinforcement Learning
and Generative Models [67.78935378952146]
GenRL is a framework for solving sequential decision-making problems.
It exploits the combination of reinforcement learning and latent variable generative models.
We experimentally determine the characteristics of generative models that have most influence on the performance of the final policy training.
arXiv Detail & Related papers (2022-04-18T22:02:32Z) - Applications of Gaussian Mutation for Self Adaptation in Evolutionary
Genetic Algorithms [0.0]
In 1960, the first genetic algorithm was developed by John H. Holland and his student.
We explore the mathematical intuition of the genetic algorithm in developing systems capable of evolving using Gaussian mutation.
arXiv Detail & Related papers (2022-01-02T04:18:25Z) - Result Diversification by Multi-objective Evolutionary Algorithms with
Theoretical Guarantees [94.72461292387146]
We propose to reformulate the result diversification problem as a bi-objective search problem, and solve it by a multi-objective evolutionary algorithm (EA)
We theoretically prove that the GSEMO can achieve the optimal-time approximation ratio, $1/2$.
When the objective function changes dynamically, the GSEMO can maintain this approximation ratio in running time, addressing the open question proposed by Borodin et al.
arXiv Detail & Related papers (2021-10-18T14:00:22Z) - Expectile Neural Networks for Genetic Data Analysis of Complex Diseases [3.0088453915399747]
We develop an expectile neural network (ENN) method for genetic data analyses of complex diseases.
Similar to expectile regression, ENN provides a comprehensive view of relationships between genetic variants and disease phenotypes.
We show that the proposed method outperformed an existing expectile regression when there exist complex relationships between genetic variants and disease phenotypes.
arXiv Detail & Related papers (2020-10-26T21:07:40Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - A Semi-Supervised Generative Adversarial Network for Prediction of
Genetic Disease Outcomes [0.0]
We introduce genetic Generative Adversarial Networks (gGAN) to create large synthetic genetic data sets.
Our goal is to determine the propensity of a new individual to develop the severe form of the illness from their genetic profile alone.
The proposed model is self-aware and capable of determining whether a new genetic profile has enough compatibility with the data on which the network was trained.
arXiv Detail & Related papers (2020-07-02T15:35:14Z) - Genetic optimization algorithms applied toward mission computability
models [0.3655021726150368]
Genetic algorithms are computations based and low cost to compute.
We describe our genetic optimization algorithms to a mission-critical and constraints-aware problem.
arXiv Detail & Related papers (2020-05-27T00:45:24Z) - The data-driven physical-based equations discovery using evolutionary
approach [77.34726150561087]
We describe the algorithm for the mathematical equations discovery from the given observations data.
The algorithm combines genetic programming with the sparse regression.
It could be used for governing analytical equation discovery as well as for partial differential equations (PDE) discovery.
arXiv Detail & Related papers (2020-04-03T17:21:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.