Fast and Functional Structured Data Generators Rooted in Out-of-Equilibrium Physics
- URL: http://arxiv.org/abs/2307.06797v2
- Date: Tue, 12 Nov 2024 09:54:07 GMT
- Title: Fast and Functional Structured Data Generators Rooted in Out-of-Equilibrium Physics
- Authors: Alessandra Carbone, Aurélien Decelle, Lorenzo Rosset, Beatriz Seoane,
- Abstract summary: We address the challenge of using energy-based models to produce high-quality, label-specific data in structured datasets.
Traditional training methods encounter difficulties due to inefficient Markov chain Monte Carlo mixing.
We use a novel training algorithm that exploits non-equilibrium effects.
- Score: 44.97217246897902
- License:
- Abstract: In this study, we address the challenge of using energy-based models to produce high-quality, label-specific data in complex structured datasets, such as population genetics, RNA or protein sequences data. Traditional training methods encounter difficulties due to inefficient Markov chain Monte Carlo mixing, which affects the diversity of synthetic data and increases generation times. To address these issues, we use a novel training algorithm that exploits non-equilibrium effects. This approach, applied on the Restricted Boltzmann Machine, improves the model's ability to correctly classify samples and generate high-quality synthetic data in only a few sampling steps. The effectiveness of this method is demonstrated by its successful application to four different types of data: handwritten digits, mutations of human genomes classified by continental origin, functionally characterized sequences of an enzyme protein family, and homologous RNA sequences from specific taxonomies.
Related papers
- Weighted Diversified Sampling for Efficient Data-Driven Single-Cell Gene-Gene Interaction Discovery [56.622854875204645]
We present an innovative approach utilizing data-driven computational tools, leveraging an advanced Transformer model, to unearth gene-gene interactions.
A novel weighted diversified sampling algorithm computes the diversity score of each data sample in just two passes of the dataset.
arXiv Detail & Related papers (2024-10-21T03:35:23Z) - Generating Multi-Modal and Multi-Attribute Single-Cell Counts with CFGen [76.02070962797794]
We present Cell Flow for Generation, a flow-based conditional generative model for multi-modal single-cell counts.
Our results suggest improved recovery of crucial biological data characteristics while accounting for novel generative tasks.
arXiv Detail & Related papers (2024-07-16T14:05:03Z) - Semantically Rich Local Dataset Generation for Explainable AI in Genomics [0.716879432974126]
Black box deep learning models trained on genomic sequences excel at predicting the outcomes of different gene regulatory mechanisms.
We propose using Genetic Programming to generate datasets by evolving perturbations in sequences that contribute to their semantic diversity.
arXiv Detail & Related papers (2024-07-03T10:31:30Z) - Improving Grammatical Error Correction via Contextual Data Augmentation [49.746484518527716]
We propose a synthetic data construction method based on contextual augmentation.
Specifically, we combine rule-based substitution with model-based generation.
We also propose a relabeling-based data cleaning method to mitigate the effects of noisy labels in synthetic data.
arXiv Detail & Related papers (2024-06-25T10:49:56Z) - DNA Sequence Classification with Compressors [0.0]
Our study introduces a novel adaptation of Jiang et al.'s compressor-based, parameter-free classification method, specifically tailored for DNA sequence analysis.
Not only does this method align with the current state-of-the-art in terms of accuracy, but it also offers a more resource-efficient alternative to traditional machine learning methods.
arXiv Detail & Related papers (2024-01-25T09:17:19Z) - Exploring The Potential Of GANs In Biological Sequence Analysis [0.966840768820136]
We propose a novel approach to handle the data imbalance issue based on Generative Adversarial Networks (GANs)
GANs are utilized to generate synthetic data that closely resembles the real one.
We perform 3 distinct classification tasks by using 3 different sequence datasets.
arXiv Detail & Related papers (2023-03-04T13:46:45Z) - Optirank: classification for RNA-Seq data with optimal ranking reference
genes [0.0]
We propose a logistic regression model, optirank, which learns simultaneously the parameters of the model and the genes to use as a reference set in the ranking.
We also consider real classification tasks, which present different kinds of distribution shifts between train and test data.
arXiv Detail & Related papers (2023-01-11T10:49:06Z) - Mutual Exclusivity Training and Primitive Augmentation to Induce
Compositionality [84.94877848357896]
Recent datasets expose the lack of the systematic generalization ability in standard sequence-to-sequence models.
We analyze this behavior of seq2seq models and identify two contributing factors: a lack of mutual exclusivity bias and the tendency to memorize whole examples.
We show substantial empirical improvements using standard sequence-to-sequence models on two widely-used compositionality datasets.
arXiv Detail & Related papers (2022-11-28T17:36:41Z) - Using Signal Processing in Tandem With Adapted Mixture Models for
Classifying Genomic Signals [16.119729980200955]
We propose a novel technique that employs signal processing in tandem with Gaussian mixture models to improve the spectral representation of a sequence.
Our method outperforms a similar state-of-the-art method on established benchmark datasets by an absolute margin of 6.06% accuracy.
arXiv Detail & Related papers (2022-11-03T06:10:55Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.