Transformation trees -- documentation of multimodal image registration
- URL: http://arxiv.org/abs/2501.19140v3
- Date: Fri, 18 Apr 2025 09:47:07 GMT
- Title: Transformation trees -- documentation of multimodal image registration
- Authors: Agnieszka Anna Tomaka, Dariusz Pojda, MichaĆ Tarnawski, Leszek Luchowski,
- Abstract summary: Multimodal image registration plays a key role in creating digital patient models.<n>We propose the use of transformation trees as a method for structured recording and management of transformations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal image registration plays a key role in creating digital patient models by combining data from different imaging techniques into a single coordinate system. This process often involves multiple sequential and interconnected transformations, which must be well-documented to ensure transparency and reproducibility. In this paper, we propose the use of transformation trees as a method for structured recording and management of these transformations. This approach has been implemented in the dpVision software and uses a dedicated .dpw file format to store hierarchical relationships between images, transformations, and motion data. Transformation trees allow precise tracking of all image processing steps, reduce the need to store multiple copies of the same data, and enable the indirect registration of images that do not share common reference points. This improves the reproducibility of the analyses and facilitates later processing and integration of images from different sources. The practical application of this method is demonstrated with examples from orthodontics, including the integration of 3D face scans, intraoral scans, and CBCT images, as well as the documentation of mandibular motion. Beyond orthodontics, this method can be applied in other fields that require systematic management of image registration processes, such as maxillofacial surgery, oncology, and biomechanical analysis. Maintaining long-term data consistency is essential for both scientific research and clinical practice. It enables easier comparison of results in longitudinal studies, improves retrospective analysis, and supports the development of artificial intelligence algorithms by providing standardized and well-documented datasets. The proposed approach enhances data organization, allows for efficient analysis, and facilitates the reuse of information in future studies and diagnostic procedures.
Related papers
- Novel computational workflows for natural and biomedical image processing based on hypercomplex algebras [49.81327385913137]
Hypercomplex image processing extends conventional techniques in a unified paradigm encompassing algebraic and geometric principles.
This workleverages quaternions and the two-dimensional planes split framework (splitting of a quaternion - representing a pixel - into pairs of 2D planes) for natural/biomedical image analysis.
The proposed can regulate color appearance (e.g. with alternative renditions and grayscale conversion) and image contrast, be part of automated image processing pipelines.
arXiv Detail & Related papers (2025-02-11T18:38:02Z) - Scalable Weibull Graph Attention Autoencoder for Modeling Document Networks [50.42343781348247]
We develop a graph Poisson factor analysis (GPFA) which provides analytic conditional posteriors to improve the inference accuracy.
We also extend GPFA to a multi-stochastic-layer version named graph Poisson gamma belief network (GPGBN) to capture the hierarchical document relationships at multiple semantic levels.
Our models can extract high-quality hierarchical latent document representations and achieve promising performance on various graph analytic tasks.
arXiv Detail & Related papers (2024-10-13T02:22:14Z) - Bayesian Unsupervised Disentanglement of Anatomy and Geometry for Deep Groupwise Image Registration [50.62725807357586]
This article presents a general Bayesian learning framework for multi-modal groupwise image registration.
We propose a novel hierarchical variational auto-encoding architecture to realise the inference procedure of the latent variables.
Experiments were conducted to validate the proposed framework, including four different datasets from cardiac, brain, and abdominal medical images.
arXiv Detail & Related papers (2024-01-04T08:46:39Z) - A Simple and Robust Framework for Cross-Modality Medical Image
Segmentation applied to Vision Transformers [0.0]
We propose a simple framework to achieve fair image segmentation of multiple modalities using a single conditional model.
We show that our framework outperforms other cross-modality segmentation methods on the Multi-Modality Whole Heart Conditional Challenge.
arXiv Detail & Related papers (2023-10-09T09:51:44Z) - Deep learning in medical image registration: introduction and survey [0.0]
This document introduces image registration using a simple numeric example.
It provides a definition of image registration along with a space-oriented symbolic representation.
It also explores applications in image-guided surgery, motion tracking, and tumor diagnosis.
arXiv Detail & Related papers (2023-09-01T20:35:00Z) - Unifying Vision, Text, and Layout for Universal Document Processing [105.36490575974028]
We propose a Document AI model which unifies text, image, and layout modalities together with varied task formats, including document understanding and generation.
Our method sets the state-of-the-art on 9 Document AI tasks, e.g., document understanding and QA, across diverse data domains like finance reports, academic papers, and websites.
arXiv Detail & Related papers (2022-12-05T22:14:49Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
We propose a novel Attentive Symmetric Auto-encoder based on Vision Transformer (ViT) for 3D brain MRI segmentation tasks.
In the pre-training stage, the proposed auto-encoder pays more attention to reconstruct the informative patches according to the gradient metrics.
Experimental results show that our proposed attentive symmetric auto-encoder outperforms the state-of-the-art self-supervised learning methods and medical image segmentation models.
arXiv Detail & Related papers (2022-09-19T09:43:19Z) - Bayesian intrinsic groupwise registration via explicit hierarchical
disentanglement [18.374535632681884]
We propose a general framework which formulates groupwise registration as a procedure of hierarchical Bayesian inference.
Here, we propose a novel variational posterior and network architecture that facilitate joint learning of the common structural representation.
Results have demonstrated the efficacy of our framework in realizing multimodal groupwise registration in an end-to-end fashion.
arXiv Detail & Related papers (2022-06-06T06:13:24Z) - Automated Learning for Deformable Medical Image Registration by Jointly
Optimizing Network Architectures and Objective Functions [69.6849409155959]
This paper proposes an automated learning registration algorithm (AutoReg) that cooperatively optimize both architectures and their corresponding training objectives.
We conduct image registration experiments on multi-site volume datasets and various registration tasks.
Our results show that our AutoReg may automatically learn an optimal deep registration network for given volumes and achieve state-of-the-art performance.
arXiv Detail & Related papers (2022-03-14T01:54:38Z) - Unsupervised Image Registration Towards Enhancing Performance and
Explainability in Cardiac And Brain Image Analysis [3.5718941645696485]
Inter- and intra-modality affine and non-rigid image registration is an essential medical image analysis process in clinical imaging.
We present an un-supervised deep learning registration methodology which can accurately model affine and non-rigid trans-formations.
Our methodology performs bi-directional cross-modality image synthesis to learn modality-invariant latent rep-resentations.
arXiv Detail & Related papers (2022-03-07T12:54:33Z) - Deep Feature based Cross-slide Registration [13.271717388861557]
Cross-slide image analysis provides additional information by analysing the expression of different biomarkers as compared to a single slide analysis.
We propose a deep feature based registration (DFBR) method which utilises data-driven features to estimate the rigid transformation.
arXiv Detail & Related papers (2022-02-21T03:25:12Z) - A Transformer-Based Siamese Network for Change Detection [72.04912755926524]
This paper presents a transformer-based Siamese network architecture (abbreviated by ChangeFormer) for Change Detection (CD)
The proposed method unifies hierarchically structured transformer encoder with Multi-Layer Perception (MLP) decoder in a Siamese network architecture to efficiently render multi-scale long-range details required for accurate CD.
arXiv Detail & Related papers (2022-01-04T18:55:22Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
This paper builds a novel medical slice to increase the between-slice resolution.
Considering that the ground-truth intermediate medical slices are always absent in clinical practice, we introduce the incremental cross-view mutual distillation strategy.
Our method outperforms state-of-the-art algorithms by clear margins.
arXiv Detail & Related papers (2021-12-20T03:38:37Z) - JSSR: A Joint Synthesis, Segmentation, and Registration System for 3D
Multi-Modal Image Alignment of Large-scale Pathological CT Scans [27.180136688977512]
We propose a novel multi-task learning system, JSSR, based on an end-to-end 3D convolutional neural network.
The system is optimized to satisfy the implicit constraints between different tasks in an unsupervised manner.
It consistently outperforms conventional state-of-the-art multi-modal registration methods.
arXiv Detail & Related papers (2020-05-25T16:30:02Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.