論文の概要: PSyDUCK: Training-Free Steganography for Latent Diffusion
- arxiv url: http://arxiv.org/abs/2501.19172v2
- Date: Sat, 08 Mar 2025 19:32:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:50:06.096584
- Title: PSyDUCK: Training-Free Steganography for Latent Diffusion
- Title(参考訳): PSyDUCK : 潜伏拡散に対する無訓練ステガノグラフィー
- Authors: Aqib Mahfuz, Georgia Channing, Mark van der Wilk, Philip Torr, Fabio Pizzati, Christian Schroeder de Witt,
- Abstract要約: PSyDUCKは、潜伏拡散モデルに特化して設計されたトレーニング不要で、モデルに依存しないステガノグラフィーフレームワークである。
本手法は,埋め込み強度を精度と検出性のバランスに動的に適用し,既存の画素空間アプローチを大幅に改善する。
- 参考スコア(独自算出の注目度): 22.17835886086284
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in generative AI have opened promising avenues for steganography, which can securely protect sensitive information for individuals operating in hostile environments, such as journalists, activists, and whistleblowers. However, existing methods for generative steganography have significant limitations, particularly in scalability and their dependence on retraining diffusion models. We introduce PSyDUCK, a training-free, model-agnostic steganography framework specifically designed for latent diffusion models. PSyDUCK leverages controlled divergence and local mixing within the latent denoising process, enabling high-capacity, secure message embedding without compromising visual fidelity. Our method dynamically adapts embedding strength to balance accuracy and detectability, significantly improving upon existing pixel-space approaches. Crucially, PSyDUCK extends generative steganography to latent-space video diffusion models, surpassing previous methods in both encoding capacity and robustness. Extensive experiments demonstrate PSyDUCK's superiority over state-of-the-art techniques, achieving higher transmission accuracy and lower detectability rates across diverse image and video datasets. By overcoming the key challenges associated with latent diffusion model architectures, PSyDUCK sets a new standard for generative steganography, paving the way for scalable, real-world steganographic applications.
- Abstract(参考訳): 近年のジェネレーティブAIの進歩は、ジャーナリスト、活動家、ホイッスルブロワーなど敵対的な環境で活動する個人に対して、機密情報を安全に保護するステガノグラフィーの有望な道を開いた。
しかし、既存のステガノグラフィーの手法には、特にスケーラビリティと再学習拡散モデルへの依存において、大きな制限がある。
遅延拡散モデルに特化して設計されたPSyDUCKは、トレーニング不要で、モデルに依存しないステガノグラフィーフレームワークである。
PSyDUCKは制御された分散と局所混合を利用して、視覚的忠実さを損なうことなく、高容量でセキュアなメッセージ埋め込みを可能にする。
本手法は,埋め込み強度を精度と検出性のバランスに動的に適用し,既存の画素空間アプローチを大幅に改善する。
重要なことは、PSyDUCKは生成ステガノグラフィーを潜在空間ビデオ拡散モデルに拡張し、エンコーディング能力とロバスト性の両方において従来の手法を超越している。
大規模な実験は、PSyDUCKが最先端技術よりも優れていることを示し、様々な画像やビデオデータセット間で高い伝送精度と低い検出率を達成する。
潜伏拡散モデルアーキテクチャに関連する重要な課題を克服することで、PSyDUCKは生成ステガノグラフィーの新しい標準を設定し、スケーラブルで実世界のステガノグラフィー応用への道を開いた。
関連論文リスト
- InstaRevive: One-Step Image Enhancement via Dynamic Score Matching [66.97989469865828]
InstaReviveは、強力な生成能力を活用するためにスコアベースの拡散蒸留を利用する画像強調フレームワークである。
私たちのフレームワークは、さまざまな課題やデータセットにまたがって、高品質で視覚的に魅力的な結果を提供します。
論文 参考訳(メタデータ) (2025-04-22T01:19:53Z) - One-Step Diffusion Model for Image Motion-Deblurring [85.76149042561507]
本稿では,脱臭過程を1段階に短縮する新しいフレームワークである脱臭拡散モデル(OSDD)を提案する。
拡散モデルにおける忠実度損失に対処するために,構造復元を改善する改良された変分オートエンコーダ(eVAE)を導入する。
提案手法は,実測値と非参照値の両方で高い性能を達成する。
論文 参考訳(メタデータ) (2025-03-09T09:39:57Z) - InpDiffusion: Image Inpainting Localization via Conditional Diffusion Models [10.213390634031049]
現在のIIL法は2つの大きな課題に直面している。
拡散モデルを用いた条件付きマスク生成タスクとしてIILを扱う新しいパラダイムを提案する。
我々の手法であるInpDiffusionは、画像意味条件の統合によって強化された復調過程を利用して、予測を段階的に洗練する。
論文 参考訳(メタデータ) (2025-01-06T07:32:12Z) - A Novel Approach to Image Steganography Using Generative Adversarial Networks [0.0]
本稿では,GAN(Generative Adversarial Network)のパワーを活用した画像ステガノグラフィー手法を提案する。
慎重に設計されたGANアーキテクチャを用いることで,本手法は,従来のものと視覚的に区別できないステゴイメージの作成を確実にする。
その結果,Pak Signal-to-Noise Ratio (PSNR), Structure similarity Index Measure (SSIM),そして検出に対する堅牢性などの指標が大幅に改善された。
論文 参考訳(メタデータ) (2024-11-27T14:34:41Z) - Diffusion-Based Hierarchical Image Steganography [60.69791384893602]
Hierarchical Image Steganographyは、複数のイメージを単一のコンテナに埋め込むセキュリティとキャパシティを高める新しい方法である。
フローモデルの可逆性とともに拡散モデルの堅牢性を利用する。
この革新的な構造は、コンテナイメージを自律的に生成し、複数の画像やテキストを安全かつ効率的に隠蔽することができる。
論文 参考訳(メタデータ) (2024-05-19T11:29:52Z) - Digging into contrastive learning for robust depth estimation with diffusion models [55.62276027922499]
そこで我々はD4RDと呼ばれる新しい頑健な深度推定法を提案する。
複雑な環境での性能劣化を軽減するために、拡散モデルに適した独自のコントラスト学習モードを備えている。
実験では、D4RDは合成汚職データセットや現実世界の気象条件に関する最先端のソリューションを超越している。
論文 参考訳(メタデータ) (2024-04-15T14:29:47Z) - Adv-Diffusion: Imperceptible Adversarial Face Identity Attack via Latent
Diffusion Model [61.53213964333474]
本稿では,生の画素空間ではなく,潜在空間における非知覚的対角的アイデンティティ摂動を生成できる統一的なフレームワークAdv-Diffusionを提案する。
具体的には,周囲のセマンティックな摂動を生成するために,個人性に敏感な条件付き拡散生成モデルを提案する。
設計された適応強度に基づく対向摂動アルゴリズムは、攻撃の伝達性とステルス性の両方を確保することができる。
論文 参考訳(メタデータ) (2023-12-18T15:25:23Z) - SODA: Bottleneck Diffusion Models for Representation Learning [75.7331354734152]
本稿では,表現学習のための自己教師付き拡散モデルSODAを紹介する。
このモデルには、ソースビューをコンパクトな表現に蒸留するイメージエンコーダが組み込まれており、関連する新規ビューの生成を導く。
エンコーダと復調復調復調復調復調復調復調復調復号器の密集ボトルネックを付与することにより,拡散モデルを強力な表現学習器に変換することができることを示す。
論文 参考訳(メタデータ) (2023-11-29T18:53:34Z) - Global Structure-Aware Diffusion Process for Low-Light Image Enhancement [64.69154776202694]
本稿では,低照度画像強調問題に対処する拡散型フレームワークについて検討する。
我々は、その固有のODE-軌道の正規化を提唱する。
実験により,提案手法は低照度化において優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2023-10-26T17:01:52Z) - Unlearnable Examples for Diffusion Models: Protect Data from Unauthorized Exploitation [25.55296442023984]
本研究では,不正な利用から画像を保護するために,Unlearnable Diffusion Perturbationを提案する。
この成果は、AI生成コンテンツに対するプライバシーと著作権の保護に寄与するため、現実世界のシナリオにおいて重要な意味を持つ。
論文 参考訳(メタデータ) (2023-06-02T20:19:19Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
拡散モデルは画像復元作業において有望な結果を得たが、時間を要する、過剰な計算資源消費、不安定な復元に悩まされている。
本稿では,DiffLLと呼ばれる高能率かつ高能率な拡散型低光画像強調手法を提案する。
論文 参考訳(メタデータ) (2023-06-01T03:08:28Z) - CRoSS: Diffusion Model Makes Controllable, Robust and Secure Image
Steganography [15.705627450233504]
制御可能・ロバスト・セキュア画像ステガノグラフィー(CRoSS)という新しい画像ステガノグラフィーフレームワークを提案する。
CRoSSは、カバーベース画像ステガノグラフィー法と比較して、制御性、堅牢性、セキュリティにおいて大きな利点がある。
論文 参考訳(メタデータ) (2023-05-26T13:52:57Z) - Diffusion Models as Masked Autoencoders [52.442717717898056]
拡散モデルに対する近年の関心を踏まえて、生成的に事前学習された視覚表現を再考する。
拡散モデルによる直接事前学習では強い表現は得られないが、マスク付き入力上での拡散モデルと公式拡散モデルをマスク付きオートエンコーダ(DiffMAE)として条件付ける。
設計選択の長所と短所について包括的な研究を行い、拡散モデルとマスク付きオートエンコーダ間の接続を構築する。
論文 参考訳(メタデータ) (2023-04-06T17:59:56Z) - Towards Robust Image-in-Audio Deep Steganography [14.1081872409308]
本稿では,その堅牢性向上に焦点をあて,既存の音響深部ステガノグラフィー手法を拡張し,拡張する。
提案した機能拡張には、損失関数の修正、短い時間フーリエ変換(STFT)の利用、誤り訂正のための符号化プロセスにおける冗長性の導入、ピクセルサブ畳み込み操作における追加情報のバッファリングが含まれる。
論文 参考訳(メタデータ) (2023-03-09T03:16:04Z) - Data Forensics in Diffusion Models: A Systematic Analysis of Membership
Privacy [62.16582309504159]
本研究では,拡散モデルに対するメンバシップ推論攻撃の系統的解析を開発し,各攻撃シナリオに適した新しい攻撃手法を提案する。
提案手法は容易に入手可能な量を利用して,現実的なシナリオにおいてほぼ完全な攻撃性能 (>0.9 AUCROC) を達成することができる。
論文 参考訳(メタデータ) (2023-02-15T17:37:49Z) - Latent Diffusion for Language Generation [26.620353485679892]
言語への拡散を適応しようとする最近の試みは、既存の言語モデルの代替として拡散を提示している。
我々は,エンコーダ-デコーダ言語モデルを用いて,高品質なオートエンコーダを効率的に学習できることを実証した。
非条件, クラス条件, シーケンス・ツー・シーケンス言語生成に対する提案手法の有効性を検証する。
論文 参考訳(メタデータ) (2022-12-19T13:57:06Z) - A Survey on Generative Diffusion Model [75.93774014861978]
拡散モデルは、深層生成モデルの新たなクラスである。
時間を要する反復生成過程や高次元ユークリッド空間への閉じ込めなど、いくつかの制限がある。
本調査では,拡散モデルの向上を目的とした高度な手法を多数提示する。
論文 参考訳(メタデータ) (2022-09-06T16:56:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。