論文の概要: Integrating Semi-Supervised and Active Learning for Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2501.19227v1
- Date: Fri, 31 Jan 2025 15:37:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-03 14:03:15.611237
- Title: Integrating Semi-Supervised and Active Learning for Semantic Segmentation
- Title(参考訳): セマンティックセグメンテーションのためのセミスーパービジョンとアクティブラーニングの統合
- Authors: Wanli Ma, Oktay Karakus, Paul L. Rosin,
- Abstract要約: 半教師付き学習フレームワークを改良した新しい能動的学習手法を提案する。
提案手法は、擬似ラベルが不正確である可能性のある領域をピンポイントする。
擬似ラベルの自動修正 (PLAR) モジュールは, 偽ラベルの可能性のある画素を補正するために提案されている。
- 参考スコア(独自算出の注目度): 17.690698736544626
- License:
- Abstract: In this paper, we propose a novel active learning approach integrated with an improved semi-supervised learning framework to reduce the cost of manual annotation and enhance model performance. Our proposed approach effectively leverages both the labelled data selected through active learning and the unlabelled data excluded from the selection process. The proposed active learning approach pinpoints areas where the pseudo-labels are likely to be inaccurate. Then, an automatic and efficient pseudo-label auto-refinement (PLAR) module is proposed to correct pixels with potentially erroneous pseudo-labels by comparing their feature representations with those of labelled regions. This approach operates without increasing the labelling budget and is based on the cluster assumption, which states that pixels belonging to the same class should exhibit similar representations in feature space. Furthermore, manual labelling is only applied to the most difficult and uncertain areas in unlabelled data, where insufficient information prevents the PLAR module from making a decision. We evaluated the proposed hybrid semi-supervised active learning framework on two benchmark datasets, one from natural and the other from remote sensing imagery domains. In both cases, it outperformed state-of-the-art methods in the semantic segmentation task.
- Abstract(参考訳): 本稿では,手動アノテーションのコストを低減し,モデル性能を向上させるため,改良された半教師付き学習フレームワークと統合された新しいアクティブ学習手法を提案する。
提案手法は,アクティブラーニングによって選択したラベル付きデータと,選択プロセスから除外されたラベル付きデータの両方を効果的に活用する。
提案手法は、擬似ラベルが不正確である可能性のある領域をピンポイントする。
そして,その特徴表現をラベル付き領域と比較することにより,潜在的に誤りのある擬似ラベル付き画素を補正するために,自動かつ効率的な擬似ラベル自動修正(PLAR)モジュールを提案する。
このアプローチはラベル付け予算を増大させることなく動作し、クラスタの仮定に基づいて、同じクラスに属するピクセルは特徴空間で同様の表現を示すべきである。
さらに、手動ラベリングは、不十分な情報がPLARモジュールが決定を下すのを妨げている未ラベルデータにおいて最も困難で不確実な領域にのみ適用される。
提案したハイブリッド半教師付き能動学習フレームワークを,2つのベンチマークデータセットで評価した。
どちらの場合も、セマンティックセグメンテーションタスクにおける最先端メソッドよりも優れています。
関連論文リスト
- Collaborative Feature-Logits Contrastive Learning for Open-Set Semi-Supervised Object Detection [75.02249869573994]
オープンセットのシナリオでは、ラベルなしデータセットには、イン・ディストリビューション(ID)クラスとアウト・オブ・ディストリビューション(OOD)クラスの両方が含まれている。
このような設定で半教師付き検出器を適用すると、OODクラスをIDクラスとして誤分類する可能性がある。
我々は、CFL-Detector(Collaborative Feature-Logits Detector)と呼ばれるシンプルで効果的な方法を提案する。
論文 参考訳(メタデータ) (2024-11-20T02:57:35Z) - Semi-Supervised Variational Adversarial Active Learning via Learning to Rank and Agreement-Based Pseudo Labeling [6.771578432805963]
アクティブラーニングは、ラベルなしサンプルの選択を自動化することで、データラベリングに関わる労力を軽減することを目的としている。
トレーニング中に大量のラベルのないデータの使用を大幅に改善する新しい手法を導入する。
様々な画像分類およびセグメンテーションベンチマークデータセットにおける技術状況に対するアプローチの優れた性能を示す。
論文 参考訳(メタデータ) (2024-08-23T00:35:07Z) - Dual-Decoupling Learning and Metric-Adaptive Thresholding for Semi-Supervised Multi-Label Learning [81.83013974171364]
半教師付きマルチラベル学習(SSMLL)は、正確なマルチラベルアノテーションを収集するコストを削減するために、ラベルのないデータを活用する強力なフレームワークである。
半教師付き学習とは異なり、インスタンスに含まれる複数のセマンティクスのため、SSMLLの擬似ラベルとして最も確率の高いラベルを選択することはできない。
本稿では,高品質な擬似ラベルを生成するための二重パースペクティブ手法を提案する。
論文 参考訳(メタデータ) (2024-07-26T09:33:53Z) - Learning with Complementary Labels Revisited: The Selected-Completely-at-Random Setting Is More Practical [66.57396042747706]
補完ラベル学習は、弱教師付き学習問題である。
均一分布仮定に依存しない一貫したアプローチを提案する。
相補的なラベル学習は、負のラベル付きバイナリ分類問題の集合として表現できる。
論文 参考訳(メタデータ) (2023-11-27T02:59:17Z) - Combining Self-labeling with Selective Sampling [2.0305676256390934]
この研究は、選択的サンプリングシナリオにおける自己ラベル技術とアクティブラーニングを組み合わせたものである。
選択したクラスに対してバイアスを課すことにより,自己ラベルの適用がパフォーマンスに悪影響を及ぼすことを示す。
提案手法は,現在の選択的サンプリング手法と一致し,より良い結果が得られる。
論文 参考訳(メタデータ) (2023-01-11T11:58:45Z) - Dist-PU: Positive-Unlabeled Learning from a Label Distribution
Perspective [89.5370481649529]
本稿では,PU学習のためのラベル分布視点を提案する。
そこで本研究では,予測型と基底型のラベル分布間のラベル分布の整合性を追求する。
提案手法の有効性を3つのベンチマークデータセットで検証した。
論文 参考訳(メタデータ) (2022-12-06T07:38:29Z) - GuidedMix-Net: Learning to Improve Pseudo Masks Using Labeled Images as
Reference [153.354332374204]
半教師付きセマンティックセマンティックセグメンテーションのための新しい手法である GuidedMix-Net を提案する。
まず、ラベル付きデータとラベルなしデータの間に特徴アライメントの目的を導入し、類似した画像対をキャプチャする。
MITransは、ラベルなしデータのさらなるプログレッシブな精細化のための強力な知識モジュールであることが示されている。
ラベル付きデータに対する教師付き学習とともに、ラベル付きデータの予測が生成した擬似マスクとともに学習される。
論文 参考訳(メタデータ) (2021-06-29T02:48:45Z) - Dual-Refinement: Joint Label and Feature Refinement for Unsupervised
Domain Adaptive Person Re-Identification [51.98150752331922]
Unsupervised Domain Adaptive (UDA) Person Re-identification (再ID) は、ターゲットドメインデータのラベルが欠落しているため、難しい作業です。
オフラインクラスタリングフェーズにおける擬似ラベルとオンライントレーニングフェーズにおける特徴を共同で改良する,デュアルリファインメントと呼ばれる新しいアプローチを提案する。
本手法は最先端手法を大きなマージンで上回っている。
論文 参考訳(メタデータ) (2020-12-26T07:35:35Z) - Active Learning for Node Classification: The Additional Learning Ability
from Unlabelled Nodes [33.97571297149204]
ラベル付け予算が限られているため、active learningはラベル付けするノードを慎重に選択することで、パフォーマンスの向上を目指している。
本研究は,ノード分類のための既存のアクティブラーニング手法が,単純な手法でかなり優れていることを示す。
ノード分類のための新しい潜在空間クラスタリングに基づくアクティブラーニング手法(LSCALE)を提案する。
論文 参考訳(メタデータ) (2020-12-13T13:59:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。