Integrating Semi-Supervised and Active Learning for Semantic Segmentation
- URL: http://arxiv.org/abs/2501.19227v1
- Date: Fri, 31 Jan 2025 15:37:19 GMT
- Title: Integrating Semi-Supervised and Active Learning for Semantic Segmentation
- Authors: Wanli Ma, Oktay Karakus, Paul L. Rosin,
- Abstract summary: We propose a novel active learning approach integrated with an improved semi-supervised learning framework.
The proposed active learning approach pinpoints areas where the pseudo-labels are likely to be inaccurate.
An automatic and efficient pseudo-label auto-refinement (PLAR) module is proposed to correct pixels with potentially erroneous pseudo-labels.
- Score: 17.690698736544626
- License:
- Abstract: In this paper, we propose a novel active learning approach integrated with an improved semi-supervised learning framework to reduce the cost of manual annotation and enhance model performance. Our proposed approach effectively leverages both the labelled data selected through active learning and the unlabelled data excluded from the selection process. The proposed active learning approach pinpoints areas where the pseudo-labels are likely to be inaccurate. Then, an automatic and efficient pseudo-label auto-refinement (PLAR) module is proposed to correct pixels with potentially erroneous pseudo-labels by comparing their feature representations with those of labelled regions. This approach operates without increasing the labelling budget and is based on the cluster assumption, which states that pixels belonging to the same class should exhibit similar representations in feature space. Furthermore, manual labelling is only applied to the most difficult and uncertain areas in unlabelled data, where insufficient information prevents the PLAR module from making a decision. We evaluated the proposed hybrid semi-supervised active learning framework on two benchmark datasets, one from natural and the other from remote sensing imagery domains. In both cases, it outperformed state-of-the-art methods in the semantic segmentation task.
Related papers
- Collaborative Feature-Logits Contrastive Learning for Open-Set Semi-Supervised Object Detection [75.02249869573994]
In open-set scenarios, the unlabeled dataset contains both in-distribution (ID) classes and out-of-distribution (OOD) classes.
Applying semi-supervised detectors in such settings can lead to misclassifying OOD class as ID classes.
We propose a simple yet effective method, termed Collaborative Feature-Logits Detector (CFL-Detector)
arXiv Detail & Related papers (2024-11-20T02:57:35Z) - Semi-Supervised Variational Adversarial Active Learning via Learning to Rank and Agreement-Based Pseudo Labeling [6.771578432805963]
Active learning aims to alleviate the amount of labor involved in data labeling by automating the selection of unlabeled samples.
We introduce novel techniques that significantly improve the use of abundant unlabeled data during training.
We demonstrate the superior performance of our approach over the state of the art on various image classification and segmentation benchmark datasets.
arXiv Detail & Related papers (2024-08-23T00:35:07Z) - Dual-Decoupling Learning and Metric-Adaptive Thresholding for Semi-Supervised Multi-Label Learning [81.83013974171364]
Semi-supervised multi-label learning (SSMLL) is a powerful framework for leveraging unlabeled data to reduce the expensive cost of collecting precise multi-label annotations.
Unlike semi-supervised learning, one cannot select the most probable label as the pseudo-label in SSMLL due to multiple semantics contained in an instance.
We propose a dual-perspective method to generate high-quality pseudo-labels.
arXiv Detail & Related papers (2024-07-26T09:33:53Z) - Learning with Complementary Labels Revisited: The Selected-Completely-at-Random Setting Is More Practical [66.57396042747706]
Complementary-label learning is a weakly supervised learning problem.
We propose a consistent approach that does not rely on the uniform distribution assumption.
We find that complementary-label learning can be expressed as a set of negative-unlabeled binary classification problems.
arXiv Detail & Related papers (2023-11-27T02:59:17Z) - Combining Self-labeling with Selective Sampling [2.0305676256390934]
This work combines self-labeling techniques with active learning in a selective sampling scenario.
We show that naive application of self-labeling can harm performance by introducing bias towards selected classes.
The proposed method matches current selective sampling methods or achieves better results.
arXiv Detail & Related papers (2023-01-11T11:58:45Z) - Dist-PU: Positive-Unlabeled Learning from a Label Distribution
Perspective [89.5370481649529]
We propose a label distribution perspective for PU learning in this paper.
Motivated by this, we propose to pursue the label distribution consistency between predicted and ground-truth label distributions.
Experiments on three benchmark datasets validate the effectiveness of the proposed method.
arXiv Detail & Related papers (2022-12-06T07:38:29Z) - GuidedMix-Net: Learning to Improve Pseudo Masks Using Labeled Images as
Reference [153.354332374204]
We propose a novel method for semi-supervised semantic segmentation named GuidedMix-Net.
We first introduce a feature alignment objective between labeled and unlabeled data to capture potentially similar image pairs.
MITrans is shown to be a powerful knowledge module for further progressive refining features of unlabeled data.
Along with supervised learning for labeled data, the prediction of unlabeled data is jointly learned with the generated pseudo masks.
arXiv Detail & Related papers (2021-06-29T02:48:45Z) - Dual-Refinement: Joint Label and Feature Refinement for Unsupervised
Domain Adaptive Person Re-Identification [51.98150752331922]
Unsupervised domain adaptive (UDA) person re-identification (re-ID) is a challenging task due to the missing of labels for the target domain data.
We propose a novel approach, called Dual-Refinement, that jointly refines pseudo labels at the off-line clustering phase and features at the on-line training phase.
Our method outperforms the state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2020-12-26T07:35:35Z) - Active Learning for Node Classification: The Additional Learning Ability
from Unlabelled Nodes [33.97571297149204]
Given a limited labelling budget, active learning aims to improve performance by carefully choosing which nodes to label.
Our empirical study shows that existing active learning methods for node classification are considerably outperformed by a simple method.
We propose a novel latent space clustering-based active learning method for node classification (LSCALE)
arXiv Detail & Related papers (2020-12-13T13:59:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.