Semi-Supervised Variational Adversarial Active Learning via Learning to Rank and Agreement-Based Pseudo Labeling
- URL: http://arxiv.org/abs/2408.12774v1
- Date: Fri, 23 Aug 2024 00:35:07 GMT
- Title: Semi-Supervised Variational Adversarial Active Learning via Learning to Rank and Agreement-Based Pseudo Labeling
- Authors: Zongyao Lyu, William J. Beksi,
- Abstract summary: Active learning aims to alleviate the amount of labor involved in data labeling by automating the selection of unlabeled samples.
We introduce novel techniques that significantly improve the use of abundant unlabeled data during training.
We demonstrate the superior performance of our approach over the state of the art on various image classification and segmentation benchmark datasets.
- Score: 6.771578432805963
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Active learning aims to alleviate the amount of labor involved in data labeling by automating the selection of unlabeled samples via an acquisition function. For example, variational adversarial active learning (VAAL) leverages an adversarial network to discriminate unlabeled samples from labeled ones using latent space information. However, VAAL has the following shortcomings: (i) it does not exploit target task information, and (ii) unlabeled data is only used for sample selection rather than model training. To address these limitations, we introduce novel techniques that significantly improve the use of abundant unlabeled data during training and take into account the task information. Concretely, we propose an improved pseudo-labeling algorithm that leverages information from all unlabeled data in a semi-supervised manner, thus allowing a model to explore a richer data space. In addition, we develop a ranking-based loss prediction module that converts predicted relative ranking information into a differentiable ranking loss. This loss can be embedded as a rank variable into the latent space of a variational autoencoder and then trained with a discriminator in an adversarial fashion for sample selection. We demonstrate the superior performance of our approach over the state of the art on various image classification and segmentation benchmark datasets.
Related papers
- XAL: EXplainable Active Learning Makes Classifiers Better Low-resource Learners [71.8257151788923]
We propose a novel Explainable Active Learning framework (XAL) for low-resource text classification.
XAL encourages classifiers to justify their inferences and delve into unlabeled data for which they cannot provide reasonable explanations.
Experiments on six datasets show that XAL achieves consistent improvement over 9 strong baselines.
arXiv Detail & Related papers (2023-10-09T08:07:04Z) - Soft Curriculum for Learning Conditional GANs with Noisy-Labeled and
Uncurated Unlabeled Data [70.25049762295193]
We introduce a novel conditional image generation framework that accepts noisy-labeled and uncurated data during training.
We propose soft curriculum learning, which assigns instance-wise weights for adversarial training while assigning new labels for unlabeled data.
Our experiments show that our approach outperforms existing semi-supervised and label-noise robust methods in terms of both quantitative and qualitative performance.
arXiv Detail & Related papers (2023-07-17T08:31:59Z) - Dash: Semi-Supervised Learning with Dynamic Thresholding [72.74339790209531]
We propose a semi-supervised learning (SSL) approach that uses unlabeled examples to train models.
Our proposed approach, Dash, enjoys its adaptivity in terms of unlabeled data selection.
arXiv Detail & Related papers (2021-09-01T23:52:29Z) - Out-distribution aware Self-training in an Open World Setting [62.19882458285749]
We leverage unlabeled data in an open world setting to further improve prediction performance.
We introduce out-distribution aware self-training, which includes a careful sample selection strategy.
Our classifiers are by design out-distribution aware and can thus distinguish task-related inputs from unrelated ones.
arXiv Detail & Related papers (2020-12-21T12:25:04Z) - Minimax Active Learning [61.729667575374606]
Active learning aims to develop label-efficient algorithms by querying the most representative samples to be labeled by a human annotator.
Current active learning techniques either rely on model uncertainty to select the most uncertain samples or use clustering or reconstruction to choose the most diverse set of unlabeled examples.
We develop a semi-supervised minimax entropy-based active learning algorithm that leverages both uncertainty and diversity in an adversarial manner.
arXiv Detail & Related papers (2020-12-18T19:03:40Z) - Adversarial Knowledge Transfer from Unlabeled Data [62.97253639100014]
We present a novel Adversarial Knowledge Transfer framework for transferring knowledge from internet-scale unlabeled data to improve the performance of a classifier.
An important novel aspect of our method is that the unlabeled source data can be of different classes from those of the labeled target data, and there is no need to define a separate pretext task.
arXiv Detail & Related papers (2020-08-13T08:04:27Z) - Learning to Rank for Active Learning: A Listwise Approach [36.72443179449176]
Active learning emerged as an alternative to alleviate the effort to label huge amount of data for data hungry applications.
In this work, we rethink the structure of the loss prediction module, using a simple but effective listwise approach.
Experimental results on four datasets demonstrate that our method outperforms recent state-of-the-art active learning approaches for both image classification and regression tasks.
arXiv Detail & Related papers (2020-07-31T21:05:16Z) - Task-Aware Variational Adversarial Active Learning [42.334671410592065]
We propose task-aware variational adversarial AL (TA-VAAL) that modifies task-agnostic VAAL.
Our proposed TA-VAAL outperforms state-of-the-arts on various benchmark datasets for classifications with balanced / imbalanced labels.
arXiv Detail & Related papers (2020-02-11T22:00:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.