Pheromone-based Learning of Optimal Reasoning Paths
- URL: http://arxiv.org/abs/2501.19278v1
- Date: Fri, 31 Jan 2025 16:42:31 GMT
- Title: Pheromone-based Learning of Optimal Reasoning Paths
- Authors: Anirudh Chari, Aditya Tiwari, Richard Lian, Suraj Reddy, Brian Zhou,
- Abstract summary: Ant Colony Optimization-guided Tree of Thought (ACO-ToT)<n>Ant Colony Optimization-guided Tree of Thought (ACO-ToT)<n>Ant Colony Optimization-guided Tree of Thought (ACO-ToT)
- Score: 0.5662299435213421
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have demonstrated remarkable reasoning capabilities through chain-of-thought prompting, yet discovering effective reasoning methods for complex problems remains challenging due to the vast space of possible intermediate steps. We introduce Ant Colony Optimization-guided Tree of Thought (ACO-ToT), a novel algorithm that combines ACO with LLMs to discover optimal reasoning paths for complex problems efficiently. Drawing inspiration from Hebbian learning in neurological systems, our method employs a collection of distinctly fine-tuned LLM "ants" to traverse and lay pheromone trails through a centralized tree of thought, with each ant's movement governed by a weighted combination of existing pheromone trails and its own specialized expertise. The algorithm evaluates complete reasoning paths using a mixture-of-experts-based scoring function, with pheromones reinforcing productive reasoning paths across iterations. Experiments on three challenging reasoning tasks (GSM8K, ARC-Challenge, and MATH) demonstrate that ACO-ToT performs significantly better than existing chain-of-thought optimization approaches, suggesting that incorporating biologically inspired collective search mechanisms into LLM inference can substantially enhance reasoning capabilities.
Related papers
- Chain of Methodologies: Scaling Test Time Computation without Training [77.85633949575046]
Large Language Models (LLMs) often struggle with complex reasoning tasks due to insufficient in-depth insights in their training data.<n>This paper introduces the Chain of the (CoM) framework that enhances structured thinking by integrating human methodological insights.
arXiv Detail & Related papers (2025-06-08T03:46:50Z) - ToTRL: Unlock LLM Tree-of-Thoughts Reasoning Potential through Puzzles Solving [4.987786842464663]
Tree-of-thoughts (ToT) offers a conceptually more advanced approach by modeling reasoning as an exploration within a tree structure.<n>ToTRL is designed to guide LLMs in developing the parallel ToT strategy based on the sequential CoT strategy.<n>Our ToTQwen3-8B model, trained with ToTRL, achieves significant improvement in performance and reasoning efficiency on complex reasoning tasks.
arXiv Detail & Related papers (2025-05-19T05:18:58Z) - From Chaos to Order: The Atomic Reasoner Framework for Fine-grained Reasoning in Large Language Models [46.02816479205161]
We present textbfAtomic Reasoner (textbfAR), a cognitive inference strategy that enables fine-grained reasoning.
AR decomposes the reasoning process into atomic cognitive units, employing a cognitive routing mechanism.
Results show AR's superior reasoning capabilities without the computational burden of exhaustive solution searches.
arXiv Detail & Related papers (2025-03-20T08:34:53Z) - Policy Guided Tree Search for Enhanced LLM Reasoning [3.090041654375235]
Policy-Guided Tree Search (PGTS) is a framework that combines reinforcement learning with structured tree exploration to efficiently navigate reasoning paths.
Our key innovation is a learned policy that dynamically decides between expanding, branching, backtracking, or terminating exploration, eliminating the need for manuals or exhaustive search.
arXiv Detail & Related papers (2025-02-04T22:08:20Z) - Forest-of-Thought: Scaling Test-Time Compute for Enhancing LLM Reasoning [40.069109287947875]
We propose a novel reasoning framework called Forest-of-Thought (FoT)<n>FoT integrates multiple reasoning trees to leverage collective decision-making for solving complex logical problems.<n>We introduce a dynamic self-correction strategy that enables real-time error correction and learning from past mistakes.
arXiv Detail & Related papers (2024-12-12T09:01:18Z) - Make LLMs better zero-shot reasoners: Structure-orientated autonomous reasoning [52.83539473110143]
We introduce a novel structure-oriented analysis method to help Large Language Models (LLMs) better understand a question.
To further improve the reliability in complex question-answering tasks, we propose a multi-agent reasoning system, Structure-oriented Autonomous Reasoning Agents (SARA)
Extensive experiments verify the effectiveness of the proposed reasoning system. Surprisingly, in some cases, the system even surpasses few-shot methods.
arXiv Detail & Related papers (2024-10-18T05:30:33Z) - LLaMA-Berry: Pairwise Optimization for O1-like Olympiad-Level Mathematical Reasoning [56.273799410256075]
The framework combines Monte Carlo Tree Search (MCTS) with iterative Self-Refine to optimize the reasoning path.
The framework has been tested on general and advanced benchmarks, showing superior performance in terms of search efficiency and problem-solving capability.
arXiv Detail & Related papers (2024-10-03T18:12:29Z) - Chain of Preference Optimization: Improving Chain-of-Thought Reasoning in LLMs [37.147529569445396]
Tree-of-thought (ToT) method employs tree-searching to extensively explore the reasoning space and find better reasoning paths that CoT decoding might overlook.
Fine-tuning language models (LLMs) leveraging the search tree constructed by ToT allows CoT to achieve similar or better performance.
This is achieved through Chain of Preference Optimization (CPO), where LLMs are fine-tuned to align each step of the CoT reasoning paths with those of ToT.
arXiv Detail & Related papers (2024-06-13T14:07:02Z) - Cantor: Inspiring Multimodal Chain-of-Thought of MLLM [83.6663322930814]
We argue that converging visual context acquisition and logical reasoning is pivotal for tackling visual reasoning tasks.
We propose an innovative multimodal CoT framework, termed Cantor, characterized by a perception-decision architecture.
Our experiments demonstrate the efficacy of the proposed framework, showing significant improvements in multimodal CoT performance.
arXiv Detail & Related papers (2024-04-24T17:59:48Z) - Generating Chain-of-Thoughts with a Pairwise-Comparison Approach to Searching for the Most Promising Intermediate Thought [70.30423016640749]
Chain-of-thoughts (CoT) methods were proposed to guide large language models to reason step-by-step, enabling problem solving from simple to complex.
The evaluation from the large language model (LLMs) is typically noisy and unreliable, potentially misleading the generation process in selecting promising intermediate thoughts.
In this paper, motivated by Vapnik's principle, we use pairwise-comparison evaluation instead of point-wise scoring to search for promising intermediate thoughts.
arXiv Detail & Related papers (2024-02-10T09:51:03Z) - PathFinder: Guided Search over Multi-Step Reasoning Paths [80.56102301441899]
We propose PathFinder, a tree-search-based reasoning path generation approach.
It enhances diverse branching and multi-hop reasoning through the integration of dynamic decoding.
Our model generalizes well to longer, unseen reasoning chains, reflecting similar complexities to beam search with large branching factors.
arXiv Detail & Related papers (2023-12-08T17:05:47Z) - Enhancing Chain-of-Thoughts Prompting with Iterative Bootstrapping in Large Language Models [81.01397924280612]
Large language models (LLMs) can achieve highly effective performance on various reasoning tasks by incorporating step-by-step chain-of-thought (CoT) prompting as demonstrations.
We introduce Iter-CoT (Iterative bootstrapping in Chain-of-Thoughts Prompting), an iterative bootstrapping approach for selecting exemplars and generating reasoning chains.
arXiv Detail & Related papers (2023-04-23T13:54:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.