Statistical Physics of Deep Neural Networks: Generalization Capability, Beyond the Infinite Width, and Feature Learning
- URL: http://arxiv.org/abs/2501.19281v1
- Date: Fri, 31 Jan 2025 16:43:57 GMT
- Title: Statistical Physics of Deep Neural Networks: Generalization Capability, Beyond the Infinite Width, and Feature Learning
- Authors: Sebastiano Ariosto,
- Abstract summary: This thesis applies physics-based insights to understand Deep Neural Networks (DNNs)
By understanding when a network must learn data structure, it sheds light on fostering meaningful internal representations.
- Score: 0.0
- License:
- Abstract: Deep Neural Networks (DNNs) excel at many tasks, often rivaling or surpassing human performance. Yet their internal processes remain elusive, frequently described as "black boxes." While performance can be refined experimentally, achieving a fundamental grasp of their inner workings is still a challenge. Statistical Mechanics has long tackled computational problems, and this thesis applies physics-based insights to understand DNNs via three complementary approaches. First, by averaging over data, we derive an asymptotic bound on generalization that depends solely on the size of the last layer, rather than on the total number of parameters -- revealing how deep architectures process information differently across layers. Second, adopting a data-dependent viewpoint, we explore a finite-width thermodynamic limit beyond the infinite-width regime. This leads to: (i) a closed-form expression for the generalization error in a finite-width one-hidden-layer network (regression task); (ii) an approximate partition function for deeper architectures; and (iii) a link between deep networks in this thermodynamic limit and Student's t-processes. Finally, from a task-explicit perspective, we present a preliminary analysis of how DNNs interact with a controlled dataset, investigating whether they truly internalize its structure -- collapsing to the teacher -- or merely memorize it. By understanding when a network must learn data structure rather than just memorize, it sheds light on fostering meaningful internal representations. In essence, this thesis leverages the synergy between Statistical Physics and Machine Learning to illuminate the inner behavior of DNNs.
Related papers
- Information-Theoretic Generalization Bounds for Deep Neural Networks [22.87479366196215]
Deep neural networks (DNNs) exhibit an exceptional capacity for generalization in practical applications.
This work aims to capture the effect and benefits of depth for supervised learning via information-theoretic generalization bounds.
arXiv Detail & Related papers (2024-04-04T03:20:35Z) - Assessing Neural Network Representations During Training Using
Noise-Resilient Diffusion Spectral Entropy [55.014926694758195]
Entropy and mutual information in neural networks provide rich information on the learning process.
We leverage data geometry to access the underlying manifold and reliably compute these information-theoretic measures.
We show that they form noise-resistant measures of intrinsic dimensionality and relationship strength in high-dimensional simulated data.
arXiv Detail & Related papers (2023-12-04T01:32:42Z) - From Alexnet to Transformers: Measuring the Non-linearity of Deep Neural Networks with Affine Optimal Transport [32.39176908225668]
We introduce the concept of the non-linearity signature of DNN, the first theoretically sound solution for measuring the non-linearity of deep neural networks.
We provide extensive experimental results that highlight the practical usefulness of the proposed non-linearity signature.
arXiv Detail & Related papers (2023-10-17T17:50:22Z) - Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
We find that the variance of network weights and spatial concentration of large weights are the main factors that impact neural persistence.
We propose an extension of the filtration underlying neural persistence to the whole neural network instead of single layers.
This yields our deep graph persistence measure, which implicitly incorporates persistent paths through the network and alleviates variance-related issues.
arXiv Detail & Related papers (2023-07-20T13:34:11Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
We theoretically characterize the impact of connectivity patterns on the convergence of deep neural networks (DNNs) under gradient descent training.
We show that by a simple filtration on "unpromising" connectivity patterns, we can trim down the number of models to evaluate.
arXiv Detail & Related papers (2022-05-11T17:43:54Z) - Information Flow in Deep Neural Networks [0.6922389632860545]
There is no comprehensive theoretical understanding of how deep neural networks work or are structured.
Deep networks are often seen as black boxes with unclear interpretations and reliability.
This work aims to apply principles and techniques from information theory to deep learning models to increase our theoretical understanding and design better algorithms.
arXiv Detail & Related papers (2022-02-10T23:32:26Z) - Dynamic Inference with Neural Interpreters [72.90231306252007]
We present Neural Interpreters, an architecture that factorizes inference in a self-attention network as a system of modules.
inputs to the model are routed through a sequence of functions in a way that is end-to-end learned.
We show that Neural Interpreters perform on par with the vision transformer using fewer parameters, while being transferrable to a new task in a sample efficient manner.
arXiv Detail & Related papers (2021-10-12T23:22:45Z) - A neural anisotropic view of underspecification in deep learning [60.119023683371736]
We show that the way neural networks handle the underspecification of problems is highly dependent on the data representation.
Our results highlight that understanding the architectural inductive bias in deep learning is fundamental to address the fairness, robustness, and generalization of these systems.
arXiv Detail & Related papers (2021-04-29T14:31:09Z) - Statistical Mechanics of Deep Linear Neural Networks: The
Back-Propagating Renormalization Group [4.56877715768796]
We study the statistical mechanics of learning in Deep Linear Neural Networks (DLNNs) in which the input-output function of an individual unit is linear.
We solve exactly the network properties following supervised learning using an equilibrium Gibbs distribution in the weight space.
Our numerical simulations reveal that despite the nonlinearity, the predictions of our theory are largely shared by ReLU networks with modest depth.
arXiv Detail & Related papers (2020-12-07T20:08:31Z) - Architecture Disentanglement for Deep Neural Networks [174.16176919145377]
We introduce neural architecture disentanglement (NAD) to explain the inner workings of deep neural networks (DNNs)
NAD learns to disentangle a pre-trained DNN into sub-architectures according to independent tasks, forming information flows that describe the inference processes.
Results show that misclassified images have a high probability of being assigned to task sub-architectures similar to the correct ones.
arXiv Detail & Related papers (2020-03-30T08:34:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.