論文の概要: Pathological MRI Segmentation by Synthetic Pathological Data Generation in Fetuses and Neonates
- arxiv url: http://arxiv.org/abs/2501.19338v1
- Date: Fri, 31 Jan 2025 17:36:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-03 14:02:37.691873
- Title: Pathological MRI Segmentation by Synthetic Pathological Data Generation in Fetuses and Neonates
- Title(参考訳): 胎児および新生児の病理組織データ生成によるMRI画像の診断
- Authors: Misha P. T Kaandorp, Damola Agbelese, Hosna Asma-ull, Hyun-Gi Kim, Kelly Payette, Patrice Grehten, Gennari Antonio Giulio, Levente István Lánczi, Andras Jakab,
- Abstract要約: Fetal&Neonatal-DDPMは, セマンティックラベル画像から高品質な合成病理学的胎児・新生児MRIを生成するために設計された, 新しい拡散モデルフレームワークである。
Fetal/Neonatal-DDPMを用いて,これらの画像から現実的な病理MRIを合成する。
放射線医は、合成MRIは、実際のMRIと比較して、品質と診断値がかなり優れていると評価した。
- 参考スコア(独自算出の注目度): 0.2595862142227317
- License:
- Abstract: Developing new methods for the automated analysis of clinical fetal and neonatal MRI data is limited by the scarcity of annotated pathological datasets and privacy concerns that often restrict data sharing, hindering the effectiveness of deep learning models. We address this in two ways. First, we introduce Fetal&Neonatal-DDPM, a novel diffusion model framework designed to generate high-quality synthetic pathological fetal and neonatal MRIs from semantic label images. Second, we enhance training data by modifying healthy label images through morphological alterations to simulate conditions such as ventriculomegaly, cerebellar and pontocerebellar hypoplasia, and microcephaly. By leveraging Fetal&Neonatal-DDPM, we synthesize realistic pathological MRIs from these modified pathological label images. Radiologists rated the synthetic MRIs as significantly (p < 0.05) superior in quality and diagnostic value compared to real MRIs, demonstrating features such as blood vessels and choroid plexus, and improved alignment with label annotations. Synthetic pathological data enhanced state-of-the-art nnUNet segmentation performance, particularly for severe ventriculomegaly cases, with the greatest improvements achieved in ventricle segmentation (Dice scores: 0.9253 vs. 0.7317). This study underscores the potential of generative AI as transformative tool for data augmentation, offering improved segmentation performance in pathological cases. This development represents a significant step towards improving analysis and segmentation accuracy in prenatal imaging, and also offers new ways for data anonymization through the generation of pathologic image data.
- Abstract(参考訳): 臨床胎児および新生児MRIデータの自動解析のための新しい手法の開発は、注釈付き病理データセットの不足と、データ共有をしばしば制限するプライバシー上の懸念によって制限され、ディープラーニングモデルの有効性を妨げている。
これを2つの方法で解決する。
第一にFetal&Neonatal-DDPMは、セマンティックラベル画像から高品質な合成病理学的胎児・新生児MRIを生成するために設計された、新しい拡散モデルフレームワークである。
第2に、形態変化による健康なラベル画像の修正により、腹腔鏡下、小脳小脳低形成症、小頭症などの症状をシミュレートし、トレーニングデータを強化する。
Fetal/Neonatal-DDPMを用いて,これらの画像から現実的な病理MRIを合成する。
放射線医は、合成MRIは、実際のMRIと比較して、品質と診断に優れており、血管や脈絡膜叢などの特徴を示し、ラベルアノテーションとの整合性を改善していると評価した(p < 0.05)。
特に重症心内膜腫症例では, 心室区分けにおいて改善がみられた(Dice scores: 0.9253 vs. 0.7317)。
本研究は、データ拡張のための変換ツールとしての生成AIの可能性を強調し、病理症例におけるセグメンテーション性能の改善を提供する。
この開発は、出生前画像の解析とセグメンテーションの精度を向上させるための重要なステップであり、また、病理画像データの生成を通じてデータ匿名化のための新しい方法を提供する。
関連論文リスト
- ContextMRI: Enhancing Compressed Sensing MRI through Metadata Conditioning [51.26601171361753]
本稿では, 微細なメタデータを再構成プロセスに統合したMRI用テキスト条件拡散モデルであるContextMRIを提案する。
メタデータの忠実度はスライス位置やコントラストから患者年齢、性別、病理まで増加し、体系的に再構築性能が向上することを示す。
論文 参考訳(メタデータ) (2025-01-08T05:15:43Z) - NT-ViT: Neural Transcoding Vision Transformers for EEG-to-fMRI Synthesis [7.542742087154667]
本稿ではニューラルトランスビジョントランス(モデル名)を紹介する。
モデル名(英: modelname)は、脳波同時計測(EEG)データから高分解能機能型磁気共鳴イメージング(fMRI)サンプルを推定するために設計された生成モデルである。
論文 参考訳(メタデータ) (2024-09-18T09:38:08Z) - Neurovascular Segmentation in sOCT with Deep Learning and Synthetic Training Data [4.5276169699857505]
本研究は, 連続断面光コヒーレンストモグラフィー画像における神経血管セグメンテーションのための合成エンジンについて述べる。
提案手法は,ラベル合成とラベル・ツー・イメージ変換の2段階からなる。
前者の有効性を,より現実的なトレーニングラベルの集合と比較し,後者を合成ノイズと人工物モデルのアブレーション研究により実証した。
論文 参考訳(メタデータ) (2024-07-01T16:09:07Z) - Inpainting Pathology in Lumbar Spine MRI with Latent Diffusion [4.410798232767917]
病理組織学的特徴をMRIで健全な解剖学的特徴に塗布する効率的な方法を提案する。
腰椎椎間板ヘルニアと中心管狭窄に対し,T2 MRIにて椎間板ヘルニアを挿入する能力について検討した。
論文 参考訳(メタデータ) (2024-06-04T16:47:47Z) - Improving cross-domain brain tissue segmentation in fetal MRI with synthetic data [1.1936126505067601]
胎児脳MRIにおける領域ランダム化手法であるFetal SynthSegを紹介する。
以上の結果から,合成データのみにトレーニングされたモデルは,実データにトレーニングされたモデルよりも優れていた。
評価は低磁場(0.55T)MRIで得られた40例に拡張し,新しいSRモデルを用いて再構成した。
論文 参考訳(メタデータ) (2024-03-22T10:42:25Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
縦型超音波画像におけるカテーテルのセグメンテーションのための自己教師型ディープラーニングアーキテクチャを提案する。
ネットワークアーキテクチャは、Attention in Attentionメカニズムで構築されたセグメンテーショントランスフォーマであるAiAReSeg上に構築されている。
我々は,シリコンオルタファントムから収集した合成データと画像からなる実験データセット上で,我々のモデルを検証した。
論文 参考訳(メタデータ) (2024-03-21T15:13:36Z) - FAST-AID Brain: Fast and Accurate Segmentation Tool using Artificial
Intelligence Developed for Brain [0.8376091455761259]
ヒト脳の132領域への高速かつ正確なセグメンテーションのための新しい深層学習法を提案する。
提案モデルは、効率的なU-Netライクなネットワークと、異なるビューと階層関係の交差点の利点を利用する。
提案手法は,画像の事前処理や性能低下を伴わずに頭蓋骨や他の人工物を含む脳MRIデータに適用することができる。
論文 参考訳(メタデータ) (2022-08-30T16:06:07Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
本稿では,畳み込みニューラルネットワークや生成的敵ネットワークに基づく手法を含む,高速MRIのためのディープラーニングに基づくデータ駆動手法を紹介する。
MRI加速のための物理とデータ駆動モデルの結合に関する研究について詳述する。
最後に, 臨床応用について紹介し, マルチセンター・マルチスキャナー研究における高速MRI技術におけるデータ調和の重要性と説明可能なモデルについて述べる。
論文 参考訳(メタデータ) (2022-04-01T22:48:08Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
我々は3次元畳み込みオートエンコーダを用いて、無関係な空間画像表現を実現するとともに、ABIDEデータ上で既存のアプローチより優れていることを示す。
論文 参考訳(メタデータ) (2020-10-14T16:50:50Z) - Lesion Mask-based Simultaneous Synthesis of Anatomic and MolecularMR
Images using a GAN [59.60954255038335]
提案するフレームワークは,ストレッチアウトアップサンプリングモジュール,ブレインアトラスエンコーダ,セグメンテーション一貫性モジュール,マルチスケールラベルワイド識別器から構成される。
実際の臨床データを用いた実験により,提案モデルが最先端の合成法よりも優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2020-06-26T02:50:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。