論文の概要: Do Large Multimodal Models Solve Caption Generation for Scientific Figures? Lessons Learned from SciCap Challenge 2023
- arxiv url: http://arxiv.org/abs/2501.19353v3
- Date: Tue, 18 Feb 2025 18:07:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-19 14:04:55.051974
- Title: Do Large Multimodal Models Solve Caption Generation for Scientific Figures? Lessons Learned from SciCap Challenge 2023
- Title(参考訳): 大規模マルチモーダルモデルによる科学的図形キャプション生成は可能か? : SciCap Challenge 2023から学ぶ
- Authors: Ting-Yao E. Hsu, Yi-Li Hsu, Shaurya Rohatgi, Chieh-Yang Huang, Ho Yin Sam Ng, Ryan Rossi, Sungchul Kim, Tong Yu, Lun-Wei Ku, C. Lee Giles, Ting-Hao K. Huang,
- Abstract要約: 2023年、初のSciCap Challengeが開催され、世界中のチームがSciCapデータセットを使用して、さまざまな学術分野のさまざまなフィギュアタイプをキャプションするモデルを開発するよう呼びかけた。
本稿では,第1回SciCap Challengeの概要を述べるとともに,そのデータ上での各種モデルの性能について詳述し,フィールド状態のスナップショットを撮影する。
プロの編集者は、GPT-4Vが生成した文字キャプションを他の全てのモデルや著者のオリジナルのキャプションよりも圧倒的に好んだ。
- 参考スコア(独自算出の注目度): 33.089795292870186
- License:
- Abstract: Since the SciCap datasets launch in 2021, the research community has made significant progress in generating captions for scientific figures in scholarly articles. In 2023, the first SciCap Challenge took place, inviting global teams to use an expanded SciCap dataset to develop models for captioning diverse figure types across various academic fields. At the same time, text generation models advanced quickly, with many powerful pre-trained large multimodal models (LMMs) emerging that showed impressive capabilities in various vision-and-language tasks. This paper presents an overview of the first SciCap Challenge and details the performance of various models on its data, capturing a snapshot of the fields state. We found that professional editors overwhelmingly preferred figure captions generated by GPT-4V over those from all other models and even the original captions written by authors. Following this key finding, we conducted detailed analyses to answer this question: Have advanced LMMs solved the task of generating captions for scientific figures?
- Abstract(参考訳): 2021年にSciCapデータセットがローンチされて以来、研究コミュニティは学術論文に科学的な人物のキャプションを生成することに大きく進歩してきた。
2023年、初のSciCap Challengeが開催され、世界中のチームがSciCapデータセットを使用して、さまざまな学術分野のさまざまなフィギュアタイプをキャプションするモデルを開発するよう呼びかけた。
同時に、テキスト生成モデルは急速に進歩し、様々な視覚・言語タスクにおいて印象的な機能を示す多くの強力な事前訓練された大規模マルチモーダルモデル(LMM)が出現した。
本稿では,第1回SciCap Challengeの概要と,そのデータ上での各種モデルの性能について概説し,フィールド状態のスナップショットをキャプチャする。
プロの編集者は、GPT-4Vが生成した文字キャプションを他の全てのモデルや著者のオリジナルのキャプションよりも圧倒的に好んだ。
先進的なLMMは、科学的な数字のキャプションを生成するタスクを解きましたか?
関連論文リスト
- BLIP3-KALE: Knowledge Augmented Large-Scale Dense Captions [118.35194230865451]
BLIP3-KALEは2億1800万の画像テキストペアからなるデータセットである。
KALEは、合成高密度画像キャプションをWebスケールのalt-textで拡張し、事実上接地された画像キャプションを生成する。
我々は、KALE上で視覚言語モデルを訓練し、視覚言語タスクの改善を示す。
論文 参考訳(メタデータ) (2024-11-12T00:52:52Z) - MMSci: A Dataset for Graduate-Level Multi-Discipline Multimodal Scientific Understanding [59.41495657570397]
本稿では,72の科学分野をカバーするNature Communicationsの記事からまとめられた包括的データセットについて述べる。
2つのベンチマークタスク(図のキャプションと複数選択)で19のプロプライエタリモデルとオープンソースモデルを評価し,人手による注釈を行った。
タスク固有データを用いた細調整Qwen2-VL-7Bは、GPT-4oや人間の専門家でさえも、マルチチョイス評価において優れた性能を示した。
論文 参考訳(メタデータ) (2024-07-06T00:40:53Z) - SciCapenter: Supporting Caption Composition for Scientific Figures with Machine-Generated Captions and Ratings [28.973082312034343]
本稿では,科学的な図形キャプションのための最先端AI技術を統合する対話型システムであるSciCapenterを紹介する。
SciCapenterは学術論文で各人物の様々なキャプションを生成し、キャプションの品質を評価するためのスコアと包括的なチェックリストを提供する。
Ph.D.の学生によるユーザスタディによると、SciCapenterは字幕作成の認知負荷を著しく低下させる。
論文 参考訳(メタデータ) (2024-03-26T15:16:14Z) - CapsFusion: Rethinking Image-Text Data at Scale [32.334143749598766]
本稿では,ウェブベースの画像テキストペアと合成キャプションの両方から情報を統合・洗練するためのCapsFusionを提案する。
実験の結果,CapsFusionキャプションはモデル性能において既存のキャプションよりも圧倒的に優れていた。
論文 参考訳(メタデータ) (2023-10-31T15:31:39Z) - SciCap+: A Knowledge Augmented Dataset to Study the Challenges of
Scientific Figure Captioning [18.94446071846939]
図のキャプション生成は、科学文書のモデル理解をテキストを超えて移動させるのに役立つ。
大規模なSciCapデータセットを拡張し、参照パラグラフ(図を参照するパラグラフ)とOCRトークンを含む。
以上の結果から,参照パラグラフが文脈知識として機能し,画像の自動キャプション評価スコアが大幅に向上することが示唆された。
論文 参考訳(メタデータ) (2023-06-06T08:16:16Z) - Summaries as Captions: Generating Figure Captions for Scientific
Documents with Automated Text Summarization [31.619379039184263]
図文キャプション生成は、科学文書におけるテキスト要約タスクとして、より効果的に取り組むことができる。
図式参照段落を具体的に要約するために,事前学習した抽象要約モデルであるPEGを微調整した。
大規模arXiv図を用いた実験により,本手法は,自動評価と人的評価の両方において,先行視覚法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2023-02-23T20:39:06Z) - Using Large Language Models to Generate Engaging Captions for Data
Visualizations [51.98253121636079]
大規模言語モデル(LLM)は、高度なディープラーニング技術を用いて人間のような散文を生成する。
主な課題は、プロンプトエンジニアリングと呼ばれるLLMの最も効果的なプロンプトを設計することである。
我々は,LLM GPT-3を用いた最初の実験について報告し,いくつかの有望な結果を得た。
論文 参考訳(メタデータ) (2022-12-27T23:56:57Z) - Scaling Autoregressive Models for Content-Rich Text-to-Image Generation [95.02406834386814]
Partiは、テキスト・ツー・イメージ生成をシーケンス・ツー・シーケンス・モデリング問題として扱う。
PartiはTransformerベースの画像トークンライザViT-VQGANを使用して、画像を離散トークンのシーケンスとしてエンコードする。
PartiPrompts (P2)は1600以上の英語のプロンプトの総合的なベンチマークである。
論文 参考訳(メタデータ) (2022-06-22T01:11:29Z) - On Advances in Text Generation from Images Beyond Captioning: A Case
Study in Self-Rationalization [89.94078728495423]
近年のモダリティ,CLIP画像表現,言語モデルの拡張は,マルチモーダル入力によるタスクのマルチモーダル自己調整を一貫して改善していないことを示す。
画像キャプションを超えて画像やテキストからテキストを生成するために構築可能なバックボーンモデリング手法が提案されている。
論文 参考訳(メタデータ) (2022-05-24T00:52:40Z) - SciCap: Generating Captions for Scientific Figures [20.696070723932866]
SCICAPは,2010年から2020年にかけて発行されたコンピュータサイエンスarXiv論文をベースとした大規模フィギュアキャプションデータセットである。
前処理後、SCICAPは290,000件以上の論文から200万件以上を抽出した。
グラフプロットをキャプションするベースラインモデルを構築した(19.2%)。
論文 参考訳(メタデータ) (2021-10-22T07:10:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。