論文の概要: CoSTI: Consistency Models for (a faster) Spatio-Temporal Imputation
- arxiv url: http://arxiv.org/abs/2501.19364v1
- Date: Fri, 31 Jan 2025 18:14:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-03 14:03:00.910177
- Title: CoSTI: Consistency Models for (a faster) Spatio-Temporal Imputation
- Title(参考訳): CoSTI:(より高速な)時空間インプットのための一貫性モデル
- Authors: Javier Solís-García, Belén Vega-Márquez, Juan A. Nepomuceno, Isabel A. Nepomuceno-Chamorro,
- Abstract要約: CoSTIは、推論時間を劇的に削減しつつ、DDPMに匹敵する計算品質を達成するために一貫性トレーニングを採用している。
複数のデータセットとデータシナリオをまたいだCoSTIを評価し、拡散モデルと同等のパフォーマンスで、計算時間を最大98%削減することを示した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Multivariate Time Series Imputation (MTSI) is crucial for many applications, such as healthcare monitoring and traffic management, where incomplete data can compromise decision-making. Existing state-of-the-art methods, like Denoising Diffusion Probabilistic Models (DDPMs), achieve high imputation accuracy; however, they suffer from significant computational costs and are notably time-consuming due to their iterative nature. In this work, we propose CoSTI, an innovative adaptation of Consistency Models (CMs) for the MTSI domain. CoSTI employs Consistency Training to achieve comparable imputation quality to DDPMs while drastically reducing inference times, making it more suitable for real-time applications. We evaluate CoSTI across multiple datasets and missing data scenarios, demonstrating up to a 98% reduction in imputation time with performance on par with diffusion-based models. This work bridges the gap between efficiency and accuracy in generative imputation tasks, providing a scalable solution for handling missing data in critical spatio-temporal systems.
- Abstract(参考訳): 多変量時系列計算(MTSI)は、医療監視や交通管理など多くのアプリケーションにおいて重要であり、不完全なデータが意思決定を損なう可能性がある。
Denoising Diffusion Probabilistic Models (DDPMs) のような既存の最先端の手法は高い計算精度を達成するが、計算コストがかなり高く、反復的な性質のために特に時間がかかる。
本稿では,MTSI ドメインに対する一貫性モデル (CM) の革新的適応である CoSTI を提案する。
CoSTI は Consistency Training を採用して DDPM に匹敵する計算品質を実現し、推論時間を劇的に短縮し、リアルタイムアプリケーションに適している。
複数のデータセットとデータシナリオをまたいだCoSTIを評価し、拡散ベースモデルと同等のパフォーマンスで、計算時間を最大98%削減することを示した。
この研究は、生成的計算タスクにおける効率性と精度のギャップを埋め、臨界時空間系の欠落データを扱うスケーラブルなソリューションを提供する。
関連論文リスト
- Scalable Numerical Embeddings for Multivariate Time Series: Enhancing Healthcare Data Representation Learning [6.635084843592727]
独立トークンとして各特徴値を扱う新しいフレームワークであるSCANEを提案する。
SCANEは、異なる機能埋め込みの特性を正規化し、スケーラブルな埋め込みメカニズムを通じて表現学習を強化する。
本研究は,MTSの精度の高い予測出力を実現するために,nUMerical eMbeddIng Transformer (SUMMIT) を開発した。
論文 参考訳(メタデータ) (2024-05-26T13:06:45Z) - Combating Missing Modalities in Egocentric Videos at Test Time [92.38662956154256]
現実のアプリケーションは、プライバシの懸念、効率性の必要性、ハードウェアの問題により、不完全なモダリティを伴う問題に直面することが多い。
再トレーニングを必要とせずに,テスト時にこの問題に対処する新しい手法を提案する。
MiDlは、欠落したモダリティをテスト時にのみ扱う、自己管理型のオンラインソリューションとしては初めてのものだ。
論文 参考訳(メタデータ) (2024-04-23T16:01:33Z) - Uncertainty-Aware Deep Attention Recurrent Neural Network for
Heterogeneous Time Series Imputation [0.25112747242081457]
欠落は多変量時系列においてユビキタスであり、信頼できる下流分析の障害となる。
本稿では、欠落した値とその関連不確かさを共同で推定するDeep Attention Recurrent Imputation (Imputation)を提案する。
実験の結果,実世界のデータセットを用いた多様な計算タスクにおいて,SOTAを上回っていることがわかった。
論文 参考訳(メタデータ) (2024-01-04T13:21:11Z) - Deep Ensembles Meets Quantile Regression: Uncertainty-aware Imputation for Time Series [45.76310830281876]
量子回帰に基づくタスクネットワークのアンサンブルを用いて不確実性を推定する新しい手法であるQuantile Sub-Ensemblesを提案する。
提案手法は,高い損失率に頑健な高精度な計算法を生成するだけでなく,非生成モデルの高速な学習により,計算効率も向上する。
論文 参考訳(メタデータ) (2023-12-03T05:52:30Z) - PREM: A Simple Yet Effective Approach for Node-Level Graph Anomaly
Detection [65.24854366973794]
ノードレベルのグラフ異常検出(GAD)は、医学、ソーシャルネットワーク、eコマースなどの分野におけるグラフ構造化データから異常ノードを特定する上で重要な役割を果たす。
本稿では,GADの効率を向上させるために,PREM (preprocessing and Matching) という簡単な手法を提案する。
我々のアプローチは、強力な異常検出機能を維持しながら、GADを合理化し、時間とメモリ消費を削減します。
論文 参考訳(メタデータ) (2023-10-18T02:59:57Z) - Perceiver-based CDF Modeling for Time Series Forecasting [25.26713741799865]
本稿では,時系列データの累積分布関数(CDF)をモデル化するための新しいアーキテクチャであるPerceiver-CDFを提案する。
提案手法は,マルチモーダル時系列予測に適したコプラに基づくアテンション機構と,知覚アーキテクチャを組み合わせたものである。
単調かつマルチモーダルなベンチマークの実験は、最先端の手法よりも20%改善されていることを一貫して示している。
論文 参考訳(メタデータ) (2023-10-03T01:13:17Z) - Differentiable and Scalable Generative Adversarial Models for Data
Imputation [24.111493826345082]
SCISは2つのモジュールから構成される。DIMとサンプルサイズ推定(SSE)である。
複数の実生活大規模データセットを用いた実験により, 提案システムでは, 生成的対角モデルトレーニングを7.1倍高速化できることを示した。
論文 参考訳(メタデータ) (2022-01-10T08:03:14Z) - MIRACLE: Causally-Aware Imputation via Learning Missing Data Mechanisms [82.90843777097606]
欠落データに対する因果認識型計算アルゴリズム(MIRACLE)を提案する。
MIRACLEは、欠落発生機構を同時にモデル化することにより、ベースラインの計算を反復的に洗練する。
我々は、MIRACLEが一貫してイミューテーションを改善することができることを示すために、合成および様々な公開データセットに関する広範な実験を行う。
論文 参考訳(メタデータ) (2021-11-04T22:38:18Z) - CSDI: Conditional Score-based Diffusion Models for Probabilistic Time
Series Imputation [107.63407690972139]
Conditional Score-based Diffusion Model for Imputation (CSDI) は、観測データに条件付きスコアベース拡散モデルを利用する新しい時系列計算法である。
CSDIは、一般的なパフォーマンスメトリクスの既存の確率論的計算方法よりも40-70%改善されている。
さらに、Cは最先端の決定論的計算法と比較して誤差を5-20%削減する。
論文 参考訳(メタデータ) (2021-07-07T22:20:24Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Improving a State-of-the-Art Heuristic for the Minimum Latency Problem
with Data Mining [69.00394670035747]
ハイブリッドメタヒューリスティックスは、オペレーション研究のトレンドとなっている。
成功例は、Greedy Randomized Adaptive Search Procedures (GRASP)とデータマイニング技術を組み合わせたものだ。
論文 参考訳(メタデータ) (2019-08-28T13:12:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。