Multi-Frame Blind Manifold Deconvolution for Rotating Synthetic Aperture Imaging
- URL: http://arxiv.org/abs/2501.19386v1
- Date: Fri, 31 Jan 2025 18:39:47 GMT
- Title: Multi-Frame Blind Manifold Deconvolution for Rotating Synthetic Aperture Imaging
- Authors: Dao Lin, Jian Zhang, Martin Benning,
- Abstract summary: Rotating synthetic aperture (RSA) imaging system captures images of the target scene at different rotation angles by rotating a rectangular aperture.
Deblurring acquired RSA images plays a critical role in reconstructing a latent sharp image underlying the scene.
We propose a novel method to process RSA images using manifold fitting and penalisation in the content of blind convolution.
- Score: 4.19203497706834
- License:
- Abstract: Rotating synthetic aperture (RSA) imaging system captures images of the target scene at different rotation angles by rotating a rectangular aperture. Deblurring acquired RSA images plays a critical role in reconstructing a latent sharp image underlying the scene. In the past decade, the emergence of blind convolution technology has revolutionised this field by its ability to model complex features from acquired images. Most of the existing methods attempt to solve the above ill-posed inverse problem through maximising a posterior. Despite this progress, researchers have paid limited attention to exploring low-dimensional manifold structures of the latent image within a high-dimensional ambient-space. Here, we propose a novel method to process RSA images using manifold fitting and penalisation in the content of multi-frame blind convolution. We develop fast algorithms for implementing the proposed procedure. Simulation studies demonstrate that manifold-based deconvolution can outperform conventional deconvolution algorithms in the sense that it can generate a sharper estimate of the latent image in terms of estimating pixel intensities and preserving structural details.
Related papers
- Multi-view 3D surface reconstruction from SAR images by inverse rendering [4.964816143841665]
We propose a new inverse rendering method for 3D reconstruction from unconstrained Synthetic Aperture Radar (SAR) images.
Our method showcases the potential of exploiting geometric disparities in SAR images and paves the way for multi-sensor data fusion.
arXiv Detail & Related papers (2025-02-14T13:19:32Z) - Ground-based image deconvolution with Swin Transformer UNet [2.41675832913699]
We introduce a two-step deconvolution framework using a Swin Transformer architecture.
Our study reveals that the deep learning-based solution introduces a bias, constraining the scope of scientific analysis.
We propose a novel third step relying on the active coefficients in the sparsity wavelet framework.
arXiv Detail & Related papers (2024-05-13T15:30:41Z) - Leveraging Classic Deconvolution and Feature Extraction in Zero-Shot
Image Restoration [0.4398130586098371]
Non-blind deconvolution aims to restore a sharp image from its blurred counterpart given an obtained kernel.
We propose a novel non-blind deconvolution method that leverages the power of deep learning and classic iterative deconvolution algorithms.
Our method demonstrates significant improvements in various real-world applications non-blind deconvolution tasks.
arXiv Detail & Related papers (2023-10-03T14:41:30Z) - Deep Richardson-Lucy Deconvolution for Low-Light Image Deblurring [48.80983873199214]
We develop a data-driven approach to model the saturated pixels by a learned latent map.
Based on the new model, the non-blind deblurring task can be formulated into a maximum a posterior (MAP) problem.
To estimate high-quality deblurred images without amplified artifacts, we develop a prior estimation network.
arXiv Detail & Related papers (2023-08-10T12:53:30Z) - DELAD: Deep Landweber-guided deconvolution with Hessian and sparse prior [0.22940141855172028]
We present a model for non-blind image deconvolution that incorporates the classic iterative method into a deep learning application.
We build our network based on the iterative Landweber deconvolution algorithm, which is integrated with trainable convolutional layers to enhance the recovered image structures and details.
arXiv Detail & Related papers (2022-09-30T11:15:03Z) - Rank-Enhanced Low-Dimensional Convolution Set for Hyperspectral Image
Denoising [50.039949798156826]
This paper tackles the challenging problem of hyperspectral (HS) image denoising.
We propose rank-enhanced low-dimensional convolution set (Re-ConvSet)
We then incorporate Re-ConvSet into the widely-used U-Net architecture to construct an HS image denoising method.
arXiv Detail & Related papers (2022-07-09T13:35:12Z) - Neural 3D Reconstruction in the Wild [86.6264706256377]
We introduce a new method that enables efficient and accurate surface reconstruction from Internet photo collections.
We present a new benchmark and protocol for evaluating reconstruction performance on such in-the-wild scenes.
arXiv Detail & Related papers (2022-05-25T17:59:53Z) - DWDN: Deep Wiener Deconvolution Network for Non-Blind Image Deblurring [66.91879314310842]
We propose an explicit deconvolution process in a feature space by integrating a classical Wiener deconvolution framework with learned deep features.
A multi-scale cascaded feature refinement module then predicts the deblurred image from the deconvolved deep features.
We show that the proposed deep Wiener deconvolution network facilitates deblurred results with visibly fewer artifacts and quantitatively outperforms state-of-the-art non-blind image deblurring methods by a wide margin.
arXiv Detail & Related papers (2021-03-18T00:38:11Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z) - Deep Blind Video Super-resolution [85.79696784460887]
We propose a deep convolutional neural network (CNN) model to solve video SR by a blur kernel modeling approach.
The proposed CNN model consists of motion blur estimation, motion estimation, and latent image restoration modules.
We show that the proposed algorithm is able to generate clearer images with finer structural details.
arXiv Detail & Related papers (2020-03-10T13:43:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.