論文の概要: s1: Simple test-time scaling
- arxiv url: http://arxiv.org/abs/2501.19393v2
- Date: Mon, 03 Feb 2025 16:31:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-04 12:43:38.701356
- Title: s1: Simple test-time scaling
- Title(参考訳): s1: 単純なテスト時間スケーリング
- Authors: Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke Zettlemoyer, Percy Liang, Emmanuel Candès, Tatsunori Hashimoto,
- Abstract要約: テスト時間スケーリングは、パフォーマンスを改善するために余分なテスト時間計算を使用する言語モデリングに対する、有望な新しいアプローチである。
テストタイムのスケーリングと強力な推論性能を実現するための最もシンプルなアプローチを探します。
- 参考スコア(独自算出の注目度): 148.4204982041058
- License:
- Abstract: Test-time scaling is a promising new approach to language modeling that uses extra test-time compute to improve performance. Recently, OpenAI's o1 model showed this capability but did not publicly share its methodology, leading to many replication efforts. We seek the simplest approach to achieve test-time scaling and strong reasoning performance. First, we curate a small dataset s1K of 1,000 questions paired with reasoning traces relying on three criteria we validate through ablations: difficulty, diversity, and quality. Second, we develop budget forcing to control test-time compute by forcefully terminating the model's thinking process or lengthening it by appending "Wait" multiple times to the model's generation when it tries to end. This can lead the model to double-check its answer, often fixing incorrect reasoning steps. After supervised finetuning the Qwen2.5-32B-Instruct language model on s1K and equipping it with budget forcing, our model s1-32B exceeds o1-preview on competition math questions by up to 27% (MATH and AIME24). Further, scaling s1-32B with budget forcing allows extrapolating beyond its performance without test-time intervention: from 50% to 57% on AIME24. Our model, data, and code are open-source at https://github.com/simplescaling/s1
- Abstract(参考訳): テスト時間スケーリングは、パフォーマンスを改善するために余分なテスト時間計算を使用する言語モデリングに対する、有望な新しいアプローチである。
最近、OpenAIのo1モデルは、この能力を示したが、その方法論を公表しなかったため、多くのレプリケーション作業に繋がった。
テストタイムのスケーリングと強力な推論性能を実現するための最もシンプルなアプローチを探します。
まず、1000の質問からなる小さなデータセットs1Kを、難易度、多様性、品質の3つの基準に基づいて、推論トレースと組み合わせてキュレートします。
第二に、モデルの思考プロセスを強制的に終了させ、あるいはモデルが終了しようとするときに「待機」を複数回追加することで、テストタイムの計算を強制的に制御する予算を策定する。
これにより、モデルが答をダブルチェックし、しばしば誤った推論ステップを修正することができる。
s1K 上で Qwen2.5-32B-インストラクト言語モデルを微調整し、それを予算強制で装備した後、我々のモデル s1-32B は競合数学の質問に対する o1-preview を最大27%(MATH と AIME24)超えた。
さらに、予算強制によるs1-32Bのスケーリングでは、テストタイムの介入なしに、AIME24で50%から57%のパフォーマンスを外挿できる。
私たちのモデル、データ、コードはhttps://github.com/simplescaling/s1でオープンソースです。
関連論文リスト
- S*: Test Time Scaling for Code Generation [55.11863577956177]
コード生成のための最初のハイブリッドテストタイムスケーリングフレームワークであるS*を提案する。
S*は生成されたコードのカバレッジと選択精度を大幅に改善する。
論文 参考訳(メタデータ) (2025-02-20T09:18:53Z) - Revisiting the Test-Time Scaling of o1-like Models: Do they Truly Possess Test-Time Scaling Capabilities? [61.85289698610747]
我々は,o1-like large language model (LLMs) が本当にテスト時間スケーリング機能を持っているか検討した。
これらのo1型モデルの長いCoTは、常に精度を向上しないことがわかった。
並列スケーリング戦略とCoT長特性を組み合わせた手法であるShortest Majority Voteを提案する。
論文 参考訳(メタデータ) (2025-02-17T07:21:11Z) - Scaling up Test-Time Compute with Latent Reasoning: A Recurrent Depth Approach [70.44265766483633]
本稿では,潜在空間における暗黙的推論によるテスト時間計算のスケールアップが可能な,新しい言語モデルアーキテクチャについて検討する。
我々のモデルは繰り返しブロックを繰り返すことで動作し、テスト時に任意の深さに展開する。
結果のモデルが推論ベンチマークの性能を劇的に改善できることが示される。
論文 参考訳(メタデータ) (2025-02-07T18:55:02Z) - Do NOT Think That Much for 2+3=? On the Overthinking of o1-Like LLMs [76.43407125275202]
o1のようなモデルは、推論中に人間のような長時間の思考をエミュレートすることができる。
本論文は,これらのモデルにおける過度な考察の課題に関する,最初の包括的研究である。
精度を損なうことなく、過剰思考を緩和し、推論プロセスを合理化するための戦略を提案する。
論文 参考訳(メタデータ) (2024-12-30T18:55:12Z) - A Case Study of Web App Coding with OpenAI Reasoning Models [1.7268889851975326]
我々は,OpenAIの最新推論モデルであるo1-previewとo1-miniによるコーディングタスクのケーススタディを,他のフロンティアモデルと比較した。
o1モデルは、シングルタスクのベンチマークであるWebApp1Kに対して、SOTA結果を提供する。この結果、WebApp1K-Duoは、多くのタスクとテストケースを倍にする、より難しいベンチマークである。
論文 参考訳(メタデータ) (2024-09-19T06:58:02Z) - Language models scale reliably with over-training and on downstream tasks [121.69867718185125]
スケーリング法則は、高価なトレーニング実行を引き出すための有用なガイドである。
しかし、現在の研究と言語モデルがどのように訓練されているかには差がある。
対照的に、スケーリング法則は主に推論における損失を予測するが、モデルは通常下流のタスクのパフォーマンスで比較される。
論文 参考訳(メタデータ) (2024-03-13T13:54:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。