Behavioural Analytics: Mathematics of the Mind
- URL: http://arxiv.org/abs/2502.00013v1
- Date: Tue, 07 Jan 2025 11:44:48 GMT
- Title: Behavioural Analytics: Mathematics of the Mind
- Authors: Richard Lane, Hannah State-Davey, Claire Taylor, Wendy Holmes, Rachel Boon, Mark Round,
- Abstract summary: We describe the mathematical basis of technologies to analyse quotes in multiple languages.
These include a Bayesian network to understand behavioural factors, state estimation algorithms for time series analysis, and machine learning algorithms for classification.
We present results from studies of quotes in English, French, and Arabic, from anti-violence campaigners, politicians, extremists, and terrorists.
- Score: 0.0
- License:
- Abstract: Behavioural analytics provides insights into individual and crowd behaviour, enabling analysis of what previously happened and predictions for how people may be likely to act in the future. In defence and security, this analysis allows organisations to achieve tactical and strategic advantage through influence campaigns, a key counterpart to physical activities. Before action can be taken, online and real-world behaviour must be analysed to determine the level of threat. Huge data volumes mean that automated processes are required to attain an accurate understanding of risk. We describe the mathematical basis of technologies to analyse quotes in multiple languages. These include a Bayesian network to understand behavioural factors, state estimation algorithms for time series analysis, and machine learning algorithms for classification. We present results from studies of quotes in English, French, and Arabic, from anti-violence campaigners, politicians, extremists, and terrorists. The algorithms correctly identify extreme statements; and analysis at individual, group, and population levels detects both trends over time and sharp changes attributed to major geopolitical events. Group analysis shows that additional population characteristics can be determined, such as polarisation over particular issues and large-scale shifts in attitude. Finally, MP voting behaviour and statements from publicly-available records are analysed to determine the level of correlation between what people say and what they do.
Related papers
- The Impact of Persona-based Political Perspectives on Hateful Content Detection [4.04666623219944]
Politically diverse language models require computational resources often inaccessible to many researchers and organizations.
Recent work has established that persona-based prompting can introduce political diversity in model outputs without additional training.
We investigate whether such prompting strategies can achieve results comparable to political pretraining for downstream tasks.
arXiv Detail & Related papers (2025-02-01T09:53:17Z) - Analysing the cultural dimensions of cybercriminal groups -- A case study on the Conti ransomware group [0.0]
We propose an additional component for profiling threat actor groups through analysing cultural aspects of human behaviours and interactions.
We conduct thematic analysis across the six dimensions of the Hofstede national culture classification and the eight dimensions of the Meyer classification on leaked internal communications of the ransomware group Conti.
Insights from such applications can, first, assist in combating cybercrime and, second, can provide a level of confidence in nuanced cyber-attack attribution processes.
arXiv Detail & Related papers (2024-11-04T19:31:15Z) - Categorical Syllogisms Revisited: A Review of the Logical Reasoning Abilities of LLMs for Analyzing Categorical Syllogism [62.571419297164645]
This paper provides a systematic overview of prior works on the logical reasoning ability of large language models for analyzing categorical syllogisms.
We first investigate all the possible variations for the categorical syllogisms from a purely logical perspective.
We then examine the underlying configurations (i.e., mood and figure) tested by the existing datasets.
arXiv Detail & Related papers (2024-06-26T21:17:20Z) - Inference Attacks: A Taxonomy, Survey, and Promising Directions [44.290208239143126]
This survey provides an in-depth and comprehensive inference of attacks and corresponding countermeasures in ML-as-a-service.
We first propose the 3MP taxonomy based on the community research status, trying to normalize the confusing naming system of inference attacks.
Also, we analyze the pros and cons of each type of inference attack, their workflow, countermeasure, and how they interact with other attacks.
arXiv Detail & Related papers (2024-06-04T07:06:06Z) - Bridging the Gap: Protocol Towards Fair and Consistent Affect Analysis [24.737468736951374]
The increasing integration of machine learning algorithms in daily life underscores the critical need for fairness and equity in their deployment.
Existing databases and methodologies lack uniformity, leading to biased evaluations.
This work addresses these issues by analyzing six affective databases, annotating demographic attributes, and proposing a common protocol for database partitioning.
arXiv Detail & Related papers (2024-05-10T22:40:01Z) - It Is Time To Steer: A Scalable Framework for Analysis-driven Attack Graph Generation [50.06412862964449]
Attack Graph (AG) represents the best-suited solution to support cyber risk assessment for multi-step attacks on computer networks.
Current solutions propose to address the generation problem from the algorithmic perspective and postulate the analysis only after the generation is complete.
This paper rethinks the classic AG analysis through a novel workflow in which the analyst can query the system anytime.
arXiv Detail & Related papers (2023-12-27T10:44:58Z) - Tribe or Not? Critical Inspection of Group Differences Using TribalGram [13.670327096294479]
Group profiling and group-level analysis have been increasingly used in many domains including policy making and direct marketing.
In this work, we identify a set of accountable group analytics design guidelines to explicate the needs for group differentiation and preventing overgeneralization of a group.
Following the design guidelines, we develop TribalGram, a visual analytic suite that leverages interpretable machine learning algorithms and visualization.
arXiv Detail & Related papers (2023-03-16T21:47:48Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
We aim to identify the nonverbal cues and computational methodologies resulting in effective performance.
This survey differs from its counterparts by involving the widest spectrum of social phenomena and interaction settings.
Some major observations are: the most often used nonverbal cue, computational method, interaction environment, and sensing approach are speaking activity, support vector machines, and meetings composed of 3-4 persons equipped with microphones and cameras, respectively.
arXiv Detail & Related papers (2022-07-20T13:37:57Z) - Anatomizing Bias in Facial Analysis [86.79402670904338]
Existing facial analysis systems have been shown to yield biased results against certain demographic subgroups.
It has become imperative to ensure that these systems do not discriminate based on gender, identity, or skin tone of individuals.
This has led to research in the identification and mitigation of bias in AI systems.
arXiv Detail & Related papers (2021-12-13T09:51:13Z) - Stateful Offline Contextual Policy Evaluation and Learning [88.9134799076718]
We study off-policy evaluation and learning from sequential data.
We formalize the relevant causal structure of problems such as dynamic personalized pricing.
We show improved out-of-sample policy performance in this class of relevant problems.
arXiv Detail & Related papers (2021-10-19T16:15:56Z) - Can x2vec Save Lives? Integrating Graph and Language Embeddings for
Automatic Mental Health Classification [91.3755431537592]
I show how merging graph and language embedding models (metapath2vec and doc2vec) avoids resource limits.
When integrated, both data produce highly accurate predictions (90%, with 10% false-positives and 12% false-negatives)
These results extend research on the importance of simultaneously analyzing behavior and language in massive networks.
arXiv Detail & Related papers (2020-01-04T20:56:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.