論文の概要: Algorithmic Bias and the New Chicago School
- arxiv url: http://arxiv.org/abs/2502.00014v1
- Date: Wed, 08 Jan 2025 03:30:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-09 06:16:02.348781
- Title: Algorithmic Bias and the New Chicago School
- Title(参考訳): アルゴリズムバイアスとニューシカゴスクール
- Authors: Jyh-An Lee,
- Abstract要約: 多くのAIアルゴリズムはデータの収集や処理に偏りがあり、結果として人口統計学的特徴に基づいた事前判断が行われる。
この記事では、アルゴリズムバイアスに対する効果的な規制アプローチが、アーキテクチャ、規範、市場、法則による直接的および間接的規制の正しい混合である、と論じる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: AI systems are increasingly deployed in both public and private sectors to independently make complicated decisions with far-reaching impact on individuals and the society. However, many AI algorithms are biased in the collection or processing of data, resulting in prejudiced decisions based on demographic features. Algorithmic biases occur because of the training data fed into the AI system or the design of algorithmic models. While most legal scholars propose a direct-regulation approach associated with the right of explanation or transparency obligation, this article provides a different picture regarding how indirect regulation can be used to regulate algorithmic bias based on the New Chicago School framework developed by Lawrence Lessig. This article concludes that an effective regulatory approach toward algorithmic bias will be the right mixture of direct and indirect regulations through architecture, norms, market, and the law.
- Abstract(参考訳): AIシステムは、個人と社会に大きな影響を及ぼすことなく、独立して複雑な決定を行うために、公共部門と民間部門の両方にますます展開されている。
しかし、多くのAIアルゴリズムはデータの収集や処理に偏りがあり、結果として人口統計学的特徴に基づいた事前判断がなされる。
アルゴリズムバイアスは、AIシステムに入力されたトレーニングデータや、アルゴリズムモデルの設計によって発生する。
多くの法学者は、説明義務や透明性義務に関する直接規制アプローチを提案しているが、ローレンス・レッシグが開発したニューシカゴ学派フレームワークに基づいて、間接規制がどのようにアルゴリズムバイアスを規制できるかについて異なる見解を提供する。
本稿では, アルゴリズムバイアスに対する効果的な規制アプローチが, アーキテクチャ, 規範, 市場, 法則による直接的および間接的規制の正しい混合である,と結論づける。
関連論文リスト
- It's complicated. The relationship of algorithmic fairness and non-discrimination regulations in the EU AI Act [2.9914612342004503]
EUは最近、AIモデルの特定のルールを規定するAI法を成立させた。
本稿では、法的な非差別規則と機械学習に基づくアルゴリズムフェアネスの概念の両方を紹介する。
論文 参考訳(メタデータ) (2025-01-22T15:38:09Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
責任AI(Responsible AI)は、企業文化の発展におけるバイアスに対処する重要な性質を強調している。
この論文は、バイアスを理解すること、バイアスを緩和すること、バイアスを説明することの3つの基本的な柱に基づいて構成されている。
オープンソースの原則に従って、アクセス可能なPythonパッケージとして、Bias On DemandとFairViewをリリースしました。
論文 参考訳(メタデータ) (2024-01-13T14:07:09Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
人間中心のアプローチでAIアプリケーションを開発する必要性には、ある程度のコンセンサスがある。
i)ユーティリティと社会的善、(ii)プライバシとデータ所有、(iii)透明性と説明責任、(iv)AIによる意思決定プロセスの公正性。
異種情報ソースに基づく現在のマルチモーダルアルゴリズムは、データ中の機密要素や内部バイアスによってどのように影響を受けるかを検討する。
論文 参考訳(メタデータ) (2023-02-13T16:44:44Z) - Beyond Incompatibility: Trade-offs between Mutually Exclusive Fairness Criteria in Machine Learning and Law [2.959308758321417]
本稿では,3つのフェアネス基準を連続的に補間する新しいアルゴリズム(FAir Interpolation Method: FAIM)を提案する。
我々は,合成データ,CompASデータセット,電子商取引部門による新たな実世界のデータセットに適用した場合のアルゴリズムの有効性を実証する。
論文 参考訳(メタデータ) (2022-12-01T12:47:54Z) - Representative & Fair Synthetic Data [68.8204255655161]
公平性制約を自己監督学習プロセスに組み込むためのフレームワークを提示する。
私たちはuci成人国勢調査データセットの代表者および公正版を作成します。
我々は、代表的かつ公正な合成データを将来有望なビルディングブロックとみなし、歴史的世界ではなく、私たちが生きようとしている世界についてアルゴリズムを教える。
論文 参考訳(メタデータ) (2021-04-07T09:19:46Z) - Decision Rule Elicitation for Domain Adaptation [93.02675868486932]
ヒトインザループ機械学習は、専門家からラベルを引き出すために人工知能(AI)で広く使用されています。
この作業では、専門家が意思決定を説明する決定ルールを作成できるようにします。
決定規則の適用はアルゴリズムのドメイン適応を改善し、専門家の知識をAIモデルに広めるのに役立つことを示す。
論文 参考訳(メタデータ) (2021-02-23T08:07:22Z) - Towards a Flexible Framework for Algorithmic Fairness [0.8379286663107844]
近年、アルゴリズム決定システムにおける非差別性を保証するための多くの異なる定義が提案されている。
本稿では, 最適な輸送手段を利用して, フェアネス定義の相違を補間するフレキシブルな枠組みを提案する。
論文 参考訳(メタデータ) (2020-10-15T16:06:53Z) - Towards causal benchmarking of bias in face analysis algorithms [54.19499274513654]
顔分析アルゴリズムのアルゴリズムバイアスを測定する実験手法を開発した。
提案手法は,一致したサンプル画像の合成トランスクター'を生成することに基づく。
性別分類アルゴリズムの偏見を従来の観察法を用いて分析することにより,本手法の有効性を検証した。
論文 参考訳(メタデータ) (2020-07-13T17:10:34Z) - Bias in Multimodal AI: Testbed for Fair Automatic Recruitment [73.85525896663371]
異種情報ソースに基づく現在のマルチモーダルアルゴリズムは、データ中の機密要素や内部バイアスによってどのように影響を受けるかを検討する。
我々は、性別や人種の偏りを意識的に評価したマルチモーダルな合成プロファイルを用いて、自動求人アルゴリズムを訓練する。
我々の方法論と結果は、一般により公平なAIベースのツール、特により公平な自動採用システムを生成する方法を示している。
論文 参考訳(メタデータ) (2020-04-15T15:58:05Z) - Algorithmic Fairness [11.650381752104298]
正確であるだけでなく、客観的かつ公正なAIアルゴリズムを開発することが不可欠である。
近年の研究では、アルゴリズムによる意思決定は本質的に不公平である可能性が示されている。
論文 参考訳(メタデータ) (2020-01-21T19:01:38Z) - Bias in Data-driven AI Systems -- An Introductory Survey [37.34717604783343]
この調査は、(大きな)データと強力な機械学習(ML)アルゴリズムによって、AIの大部分は、データ駆動型AIに重点を置いている。
さもなければ、一般的な用語バイアスを使ってデータの収集や処理に関連する問題を説明します。
論文 参考訳(メタデータ) (2020-01-14T09:39:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。