論文の概要: Efficient Client Selection in Federated Learning
- arxiv url: http://arxiv.org/abs/2502.00036v1
- Date: Sat, 25 Jan 2025 02:43:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-09 05:18:38.490459
- Title: Efficient Client Selection in Federated Learning
- Title(参考訳): フェデレートラーニングにおける効率的なクライアント選択
- Authors: William Marfo, Deepak K. Tosh, Shirley V. Moore,
- Abstract要約: フェデレートラーニング(FL)は、データのプライバシを保持しながら、分散機械学習を可能にする。
本稿では,差分プライバシーとフォールトトレランスを統合した新しいクライアント選択フレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.30723404270319693
- License:
- Abstract: Federated Learning (FL) enables decentralized machine learning while preserving data privacy. This paper proposes a novel client selection framework that integrates differential privacy and fault tolerance. The adaptive client selection adjusts the number of clients based on performance and system constraints, with noise added to protect privacy. Evaluated on the UNSW-NB15 and ROAD datasets for network anomaly detection, the method improves accuracy by 7% and reduces training time by 25% compared to baselines. Fault tolerance enhances robustness with minimal performance trade-offs.
- Abstract(参考訳): フェデレートラーニング(FL)は、データのプライバシを保持しながら、分散機械学習を可能にする。
本稿では,差分プライバシーとフォールトトレランスを統合した新しいクライアント選択フレームワークを提案する。
適応的なクライアント選択は、パフォーマンスとシステムの制約に基づいてクライアントの数を調整し、プライバシを保護するためにノイズを追加します。
ネットワーク異常検出のためのUNSW-NB15とROADデータセットに基づいて評価し、ベースラインと比較して精度を7%改善し、トレーニング時間を25%短縮する。
フォールトトレランスは、パフォーマンスのトレードオフを最小限にして堅牢性を高める。
関連論文リスト
- BACSA: A Bias-Aware Client Selection Algorithm for Privacy-Preserving Federated Learning in Wireless Healthcare Networks [0.5524804393257919]
本稿では,ユーザのバイアスを検知し,バイアスプロファイルに基づいてクライアントを戦略的に選択するBias-Aware Client Selection Algorithm (BACSA)を提案する。
BACSAは、Quality of Service(QoS)、プライバシ、セキュリティが最重要である、機密性の高い医療アプリケーションに適している。
論文 参考訳(メタデータ) (2024-11-01T21:34:43Z) - Emulating Full Client Participation: A Long-Term Client Selection Strategy for Federated Learning [48.94952630292219]
本稿では,クライアントの完全参加によって達成されるパフォーマンスをエミュレートする新しいクライアント選択戦略を提案する。
1ラウンドで、クライアントサブセットとフルクライアントセット間の勾配空間推定誤差を最小化し、クライアントを選択する。
複数ラウンド選択において、類似したデータ分布を持つクライアントが選択される頻度に類似することを保証する、新しい個性制約を導入する。
論文 参考訳(メタデータ) (2024-05-22T12:27:24Z) - FedCAda: Adaptive Client-Side Optimization for Accelerated and Stable Federated Learning [57.38427653043984]
フェデレートラーニング(FL)は、分散クライアント間の機械学習モデルの協調トレーニングにおいて、顕著なアプローチとして登場した。
我々は,この課題に対処するために設計された,革新的なクライアント適応アルゴリズムであるFedCAdaを紹介する。
我々はFedCAdaが適応性、収束性、安定性、全体的な性能の点で最先端の手法より優れていることを実証する。
論文 参考訳(メタデータ) (2024-05-20T06:12:33Z) - Binary Federated Learning with Client-Level Differential Privacy [7.854806519515342]
フェデレートラーニング(Federated Learning、FL)は、プライバシ保護のための協調学習フレームワークである。
既存のFLシステムはトレーニングアルゴリズムとしてフェデレーション平均(FedAvg)を採用するのが一般的である。
差分プライバシーを保証する通信効率のよいFLトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-08-07T06:07:04Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
本稿では,ガウス混合モデル(GMM)を用いたPFL(Personalized Federated Learning)を提案する。
FedGMMはオーバーヘッドを最小限に抑え、新しいクライアントに適応する付加的なアドバンテージを持ち、不確実な定量化を可能にします。
PFL分類と新しいサンプル検出の両方において, 合成データセットとベンチマークデータセットの実証評価により, 提案手法の優れた性能を示した。
論文 参考訳(メタデータ) (2023-05-01T20:04:46Z) - Fed-CBS: A Heterogeneity-Aware Client Sampling Mechanism for Federated
Learning via Class-Imbalance Reduction [76.26710990597498]
本研究では,ランダムに選択したクライアントからのグループデータのクラス不均衡が,性能の大幅な低下につながることを示す。
我々のキーとなる観測に基づいて、我々は効率的なクライアントサンプリング機構、すなわちフェデレートクラスバランスサンプリング(Fed-CBS)を設計する。
特に、クラス不均衡の尺度を提案し、その後、同型暗号化を用いてプライバシー保護方式でこの尺度を導出する。
論文 参考訳(メタデータ) (2022-09-30T05:42:56Z) - Federated Learning Under Intermittent Client Availability and
Time-Varying Communication Constraints [29.897785907692644]
フェデレートされた学習システムは、断続的なクライアントの可用性および/または時間変化の通信制約を伴う設定で動作する。
可用性に依存したクライアント選択戦略を学習する非バイアスアルゴリズムであるF3ASTを提案する。
CIFAR100とシェークスピアでそれぞれ186%,FedAvgは8%,FedAdamは7%であった。
論文 参考訳(メタデータ) (2022-05-13T16:08:58Z) - Stochastic Coded Federated Learning with Convergence and Privacy
Guarantees [8.2189389638822]
フェデレートラーニング(FL)は、プライバシを保存する分散機械学習フレームワークとして多くの注目を集めている。
本稿では、トラグラー問題を緩和するために、SCFL(Coded Federated Learning)というコード付きフェデレーション学習フレームワークを提案する。
我々は、相互情報差分プライバシー(MI-DP)によるプライバシー保証を特徴付け、連合学習における収束性能を分析する。
論文 参考訳(メタデータ) (2022-01-25T04:43:29Z) - Dynamic Attention-based Communication-Efficient Federated Learning [85.18941440826309]
フェデレートラーニング(FL)は、グローバル機械学習モデルをトレーニングするためのソリューションを提供する。
FLは、クライアントデータの分散が非IIDであるときに性能劣化に悩まされる。
本稿では,この劣化に対処するために,新しい適応トレーニングアルゴリズムであるtextttAdaFL$を提案する。
論文 参考訳(メタデータ) (2021-08-12T14:18:05Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL):
Performance Analysis and Resource Allocation [119.19061102064497]
ブロックチェーンをFL、すなわちブロックチェーン支援分散学習(BLADE-FL)に統合することで、分散FLフレームワークを提案する。
提案されたBLADE-FLのラウンドでは、各クライアントはトレーニング済みモデルを他のクライアントにブロードキャストし、受信したモデルに基づいてブロックを生成し、次のラウンドのローカルトレーニングの前に生成されたブロックからモデルを集約します。
遅延クライアントがblade-flの学習性能に与える影響を調査し,最適なk,学習パラメータ,遅延クライアントの割合の関係を特徴付ける。
論文 参考訳(メタデータ) (2021-01-18T07:19:08Z) - Stochastic Client Selection for Federated Learning with Volatile Clients [41.591655430723186]
Federated Learning(FL)は、プライバシ保護機械学習パラダイムである。
同期FLトレーニングの各ラウンドでは、参加できるクライアントはごくわずかである。
本稿では,この問題を解決するためのクライアント選択方式であるE3CSを提案する。
論文 参考訳(メタデータ) (2020-11-17T16:35:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。