DISC: Dataset for Analyzing Driving Styles In Simulated Crashes for Mixed Autonomy
- URL: http://arxiv.org/abs/2502.00050v1
- Date: Tue, 28 Jan 2025 15:45:25 GMT
- Title: DISC: Dataset for Analyzing Driving Styles In Simulated Crashes for Mixed Autonomy
- Authors: Sandip Sharan Senthil Kumar, Sandeep Thalapanane, Guru Nandhan Appiya Dilipkumar Peethambari, Sourang SriHari, Laura Zheng, Ming C. Lin,
- Abstract summary: DISC (Driving Styles In Simulated Crashes) is one of the first datasets to capture driving styles in pre-crash scenarios for mixed autonomy analysis.
DISC includes over 8 classes of driving styles/behaviors from hundreds of drivers navigating a simulated vehicle.
Data was collected through a driver-centric study involving human drivers encountering twelve simulated accident scenarios.
- Score: 13.365522429680547
- License:
- Abstract: Handling pre-crash scenarios is still a major challenge for self-driving cars due to limited practical data and human-driving behavior datasets. We introduce DISC (Driving Styles In Simulated Crashes), one of the first datasets designed to capture various driving styles and behaviors in pre-crash scenarios for mixed autonomy analysis. DISC includes over 8 classes of driving styles/behaviors from hundreds of drivers navigating a simulated vehicle through a virtual city, encountering rare-event traffic scenarios. This dataset enables the classification of pre-crash human driving behaviors in unsafe conditions, supporting individualized trajectory prediction based on observed driving patterns. By utilizing a custom-designed VR-based in-house driving simulator, TRAVERSE, data was collected through a driver-centric study involving human drivers encountering twelve simulated accident scenarios. This dataset fills a critical gap in human-centric driving data for rare events involving interactions with autonomous vehicles. It enables autonomous systems to better react to human drivers and optimize trajectory prediction in mixed autonomy environments involving both human-driven and self-driving cars. In addition, individual driving behaviors are classified through a set of standardized questionnaires, carefully designed to identify and categorize driving behavior traits. We correlate data features with driving behaviors, showing that the simulated environment reflects real-world driving styles. DISC is the first dataset to capture how various driving styles respond to accident scenarios, offering significant potential to enhance autonomous vehicle safety and driving behavior analysis in mixed autonomy environments.
Related papers
- VTD: Visual and Tactile Database for Driver State and Behavior Perception [1.6277623188953556]
We introduce a novel visual-tactile perception method to address subjective uncertainties in driver state and interaction behaviors.
A comprehensive dataset has been developed that encompasses multi-modal data under fatigue and distraction conditions.
arXiv Detail & Related papers (2024-12-06T09:31:40Z) - Traffic and Safety Rule Compliance of Humans in Diverse Driving Situations [48.924085579865334]
Analyzing human data is crucial for developing autonomous systems that replicate safe driving practices.
This paper presents a comparative evaluation of human compliance with traffic and safety rules across multiple trajectory prediction datasets.
arXiv Detail & Related papers (2024-11-04T09:21:00Z) - Situation Awareness for Driver-Centric Driving Style Adaptation [3.568617847600189]
We propose a situation-aware driving style model based on different visual feature encoders pretrained on fleet data.
Our experiments show that the proposed method outperforms static driving styles significantly and forms plausible situation clusters.
arXiv Detail & Related papers (2024-03-28T17:19:16Z) - DeepAccident: A Motion and Accident Prediction Benchmark for V2X
Autonomous Driving [76.29141888408265]
We propose a large-scale dataset containing diverse accident scenarios that frequently occur in real-world driving.
The proposed DeepAccident dataset includes 57K annotated frames and 285K annotated samples, approximately 7 times more than the large-scale nuScenes dataset.
arXiv Detail & Related papers (2023-04-03T17:37:00Z) - Decision Making for Autonomous Driving in Interactive Merge Scenarios
via Learning-based Prediction [39.48631437946568]
This paper focuses on the complex task of merging into moving traffic where uncertainty emanates from the behavior of other drivers.
We frame the problem as a partially observable Markov decision process (POMDP) and solve it online with Monte Carlo tree search.
The solution to the POMDP is a policy that performs high-level driving maneuvers, such as giving way to an approaching car, keeping a safe distance from the vehicle in front or merging into traffic.
arXiv Detail & Related papers (2023-03-29T16:12:45Z) - Editing Driver Character: Socially-Controllable Behavior Generation for
Interactive Traffic Simulation [29.623575243494475]
Traffic simulation plays a crucial role in evaluating and improving autonomous driving planning systems.
To ensure that autonomous vehicles take safe and efficient maneuvers in different interactive traffic scenarios, we should be able to evaluate autonomous vehicles against reactive agents.
We propose a socially-controllable behavior generation model for this purpose, which allows the users to specify the level of courtesy of the generated trajectory.
arXiv Detail & Related papers (2023-03-24T06:38:42Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
We show data-driven traffic simulation can be formulated as a world model.
We present TrafficBots, a multi-agent policy built upon motion prediction and end-to-end driving.
Experiments on the open motion dataset show TrafficBots can simulate realistic multi-agent behaviors.
arXiv Detail & Related papers (2023-03-07T18:28:41Z) - Generative AI-empowered Simulation for Autonomous Driving in Vehicular
Mixed Reality Metaverses [130.15554653948897]
In vehicular mixed reality (MR) Metaverse, distance between physical and virtual entities can be overcome.
Large-scale traffic and driving simulation via realistic data collection and fusion from the physical world is difficult and costly.
We propose an autonomous driving architecture, where generative AI is leveraged to synthesize unlimited conditioned traffic and driving data in simulations.
arXiv Detail & Related papers (2023-02-16T16:54:10Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
In this work, we propose a model-free Deep Reinforcement Learning Planner training a neural network that predicts acceleration and steering angle.
In order to deploy the system on board the real self-driving car, we also develop a module represented by a tiny neural network.
arXiv Detail & Related papers (2022-07-05T16:33:20Z) - Online Adaptation of Parameters using GRU-based Neural Network with BO
for Accurate Driving Model [0.8433000039153409]
Calibrating a driving model (DM) makes the simulated driving behavior closer to human-driving behavior.
Conventional DM-calibrating methods do not take into account that the parameters in a DM vary while driving.
We propose a DM-calibration method for measuring human driving styles to reproduce real car-following behavior more accurately.
arXiv Detail & Related papers (2021-09-24T03:07:12Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
We propose efficient mechanisms to characterize and generate testing scenarios using a state-of-the-art driving simulator.
We use our method to characterize real driving data from the Next Generation Simulation (NGSIM) project.
We rank the scenarios by defining metrics based on the complexity of avoiding accidents and provide insights into how the AV could have minimized the probability of incurring an accident.
arXiv Detail & Related papers (2021-03-12T17:00:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.