Nearly-Optimal Bandit Learning in Stackelberg Games with Side Information
- URL: http://arxiv.org/abs/2502.00204v1
- Date: Fri, 31 Jan 2025 22:40:57 GMT
- Title: Nearly-Optimal Bandit Learning in Stackelberg Games with Side Information
- Authors: Maria-Florina Balcan, Martino Bernasconi, Matteo Castiglioni, Andrea Celli, Keegan Harris, Zhiwei Steven Wu,
- Abstract summary: We study the problem of online learning in Stackelberg games with side information between a leader and a sequence of followers.
We provide learning algorithms for the leader which achieve $O(T1/2)$ regret under bandit feedback.
- Score: 57.287431079644705
- License:
- Abstract: We study the problem of online learning in Stackelberg games with side information between a leader and a sequence of followers. In every round the leader observes contextual information and commits to a mixed strategy, after which the follower best-responds. We provide learning algorithms for the leader which achieve $O(T^{1/2})$ regret under bandit feedback, an improvement from the previously best-known rates of $O(T^{2/3})$. Our algorithms rely on a reduction to linear contextual bandits in the utility space: In each round, a linear contextual bandit algorithm recommends a utility vector, which our algorithm inverts to determine the leader's mixed strategy. We extend our algorithms to the setting in which the leader's utility function is unknown, and also apply it to the problems of bidding in second-price auctions with side information and online Bayesian persuasion with public and private states. Finally, we observe that our algorithms empirically outperform previous results on numerical simulations.
Related papers
- Online Learning in Contextual Second-Price Pay-Per-Click Auctions [47.06746975822902]
We study online learning in contextual pay-per-click auctions where at each of the $T$ rounds, the learner receives some context along with a set of ads.
The learner's goal is to minimize her regret, defined as the gap between her total revenue and that of an oracle strategy.
arXiv Detail & Related papers (2023-10-08T07:04:22Z) - Online Prediction in Sub-linear Space [15.773280101995676]
We provide the first sub-linear space and sub-linear regret algorithm for online learning with expert advice (against an oblivious adversary)
We also demonstrate a separation between oblivious and (strong) adaptive adversaries by proving a linear memory lower bound of any sub-linear regret algorithm against an adaptive adversary.
arXiv Detail & Related papers (2022-07-16T16:15:39Z) - Efficient and Optimal Algorithms for Contextual Dueling Bandits under
Realizability [59.81339109121384]
We study the $K$ contextual dueling bandit problem, a sequential decision making setting in which the learner uses contextual information to make two decisions, but only observes emphpreference-based feedback suggesting that one decision was better than the other.
We provide a new algorithm that achieves the optimal regret rate for a new notion of best response regret, which is a strictly stronger performance measure than those considered in prior works.
arXiv Detail & Related papers (2021-11-24T07:14:57Z) - Online Markov Decision Processes with Aggregate Bandit Feedback [74.85532145498742]
We study a novel variant of online finite-horizon Markov Decision Processes with adversarially changing loss functions and initially unknown dynamics.
In each episode, the learner suffers the loss accumulated along the trajectory realized by the policy chosen for the episode, and observes aggregate bandit feedback.
Our main result is a computationally efficient algorithm with $O(sqrtK)$ regret for this setting, where $K$ is the number of episodes.
arXiv Detail & Related papers (2021-01-31T16:49:07Z) - Upper Confidence Bounds for Combining Stochastic Bandits [52.10197476419621]
We provide a simple method to combine bandit algorithms.
Our approach is based on a "meta-UCB" procedure that treats each of $N$ individual bandit algorithms as arms in a higher-level $N$-armed bandit problem.
arXiv Detail & Related papers (2020-12-24T05:36:29Z) - Optimally Deceiving a Learning Leader in Stackelberg Games [123.14187606686006]
Recent results in the ML community have revealed that learning algorithms used to compute the optimal strategy for the leader to commit to in a Stackelberg game, are susceptible to manipulation by the follower.
This paper shows that it is always possible for the follower to compute (near-optimal) payoffs for various scenarios about the learning interaction between leader and follower.
arXiv Detail & Related papers (2020-06-11T16:18:21Z) - Model Selection in Contextual Stochastic Bandit Problems [51.94632035240787]
We develop a meta-algorithm that selects between base algorithms.
We show through a lower bound that even when one of the base algorithms has $O(sqrtT)$ regret, in general it is impossible to get better than $Omega(sqrtT)$ regret.
arXiv Detail & Related papers (2020-03-03T18:46:34Z) - Regret Minimization in Stochastic Contextual Dueling Bandits [40.17224226373741]
We consider the problem of $K$-armed dueling bandit in the contextual setting.
We present two algorithms for the setup with respective regret guarantees.
arXiv Detail & Related papers (2020-02-20T06:36:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.