STP: Self-play LLM Theorem Provers with Iterative Conjecturing and Proving
- URL: http://arxiv.org/abs/2502.00212v3
- Date: Tue, 11 Feb 2025 03:52:52 GMT
- Title: STP: Self-play LLM Theorem Provers with Iterative Conjecturing and Proving
- Authors: Kefan Dong, Tengyu Ma,
- Abstract summary: Self-play Theorem Prover (STP) takes on two roles, conjecturer and prover.
STP simultaneously takes on two roles, conjecturer and prover.
We evaluate with both Lean and Isabelle formal versifiers.
- Score: 33.61458249318183
- License:
- Abstract: A fundamental challenge in formal theorem proving by LLMs is the lack of high-quality training data. Although reinforcement learning or expert iteration partially mitigates this issue by alternating between LLM generating proofs and finetuning them on correctly generated ones, performance quickly plateaus due to the scarcity of correct proofs (sparse rewards). To keep improving the models with limited data, we draw inspiration from mathematicians, who continuously develop new results, partly by proposing novel conjectures or exercises (which are often variants of known results) and attempting to solve them. We design the Self-play Theorem Prover (STP) that simultaneously takes on two roles, conjecturer and prover, each providing training signals to the other. The conjecturer is trained iteratively on previously generated conjectures that are barely provable by the current prover, which incentivizes it to generate increasingly challenging conjectures over time. The prover attempts to prove the conjectures with standard expert iteration. We evaluate STP with both Lean and Isabelle formal versifiers. With 19.8 billion tokens generated during the training in Lean, STP proves 26.3% of the statements in the LeanWorkbook dataset, doubling the previous best result of 13.2% achieved through expert iteration. The final model achieves state-of-the-art performance among whole-proof generation methods on miniF2F-test (61.7%, pass@3200), Proofnet-test (23.1%, pass@3200) and PutnamBench (8/644, pass@3200).
Related papers
- Goedel-Prover: A Frontier Model for Open-Source Automated Theorem Proving [72.8626512877667]
We introduce Goedel-Prover, an open-source large language model (LLM) that achieves the state-of-the-art (SOTA) performance in automated formal proof generation for mathematical problems.
arXiv Detail & Related papers (2025-02-11T15:27:35Z) - Formal Theorem Proving by Rewarding LLMs to Decompose Proofs Hierarchically [29.908878832382523]
This paper focuses on improving LLMs' ability to write proofs in formal languages that permit automated proof verification/evaluation.
We work in a more natural setup where the lemmas that are directly relevant to the theorem are not given to the theorem prover at test time.
We design an RL-based training algorithm that encourages the model to decompose a theorem into lemmas, prove the lemmas, and then prove the theorem by using the lemmas.
arXiv Detail & Related papers (2024-11-04T05:57:40Z) - Proof Automation with Large Language Models [6.587933406842906]
Large Language Models (LLMs) have shown promise in automatically generating informal proofs in natural language.
We propose PALM, a novel generate-then-repair approach that first prompts an LLM to generate an initial proof and then leverages targeted symbolic methods to iteratively repair low-level problems.
Our results show that PALM significantly outperforms other state-of-the-art approaches, successfully proving 76.6% to 180.4% more theorems.
arXiv Detail & Related papers (2024-09-22T00:19:27Z) - DeepSeek-Prover: Advancing Theorem Proving in LLMs through Large-Scale Synthetic Data [65.5290035371111]
We introduce an approach to generate extensive Lean 4 proof data derived from high-school and undergraduate-level mathematical competition problems.
We fine-tune the DeepSeekMath 7B model on this synthetic dataset, which comprises 8 million formal statements with proofs.
Our model successfully proved 5 out of 148 problems in the Lean 4 Formalized International Mathematical Olympiad (FIMO) benchmark, while GPT-4 failed to prove any.
arXiv Detail & Related papers (2024-05-23T09:03:42Z) - MUSTARD: Mastering Uniform Synthesis of Theorem and Proof Data [85.50740598523818]
MUSTARD is a framework that masters uniform synthesis of theorem and proof data of high quality and diversity.
We present a theorem-and-proof benchmark MUSTARDSAUCE with 5,866 valid data points.
We perform extensive analysis and demonstrate that MUSTARD generates validated high-quality step-by-step data.
arXiv Detail & Related papers (2024-02-14T05:57:58Z) - Enhancing Neural Theorem Proving through Data Augmentation and Dynamic
Sampling Method [1.8130068086063336]
We introduce DS-Prover, a novel dynamic sampling method for theorem proving.
We augment the training dataset by decomposing simplification and rewrite tactics with multiple premises into tactics with single premises.
We achieve a state-of-the-art performance (Pass@1) of 14.2% on the ProofNet dataset and a performance of 29.8% on MiniF2F.
arXiv Detail & Related papers (2023-12-20T09:55:21Z) - LEGO-Prover: Neural Theorem Proving with Growing Libraries [86.1191481712352]
We present LEGO-Prover, which employs a growing skill library containing verified lemmas as skills to augment the capability of LLMs used in theorem proving.
By constructing the proof modularly, LEGO-Prover enables LLMs to utilize existing skills retrieved from the library and to create new skills during the proving process.
Our ablation study indicates that these newly added skills are indeed helpful for proving theorems, resulting in an improvement from a success rate of 47.1% to 50.4%.
arXiv Detail & Related papers (2023-10-01T12:47:59Z) - LeanDojo: Theorem Proving with Retrieval-Augmented Language Models [72.54339382005732]
Large language models (LLMs) have shown promise in proving formal theorems using proof assistants such as Lean.
Existing methods are difficult to reproduce or build on, due to private code, data, and compute requirements.
This paper introduces LeanDojo: an open-source Lean toolkit consisting of toolkits, data, models.
We develop ReProver: an LLM-based prover augmented with retrieval for selecting premises from a vast math library.
arXiv Detail & Related papers (2023-06-27T17:05:32Z) - Generating Natural Language Proofs with Verifier-Guided Search [74.9614610172561]
We present a novel stepwise method NLProofS (Natural Language Proof Search)
NLProofS learns to generate relevant steps conditioning on the hypothesis.
It achieves state-of-the-art performance on EntailmentBank and RuleTaker.
arXiv Detail & Related papers (2022-05-25T02:22:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.