Learning Difference-of-Convex Regularizers for Inverse Problems: A Flexible Framework with Theoretical Guarantees
- URL: http://arxiv.org/abs/2502.00240v1
- Date: Sat, 01 Feb 2025 00:40:24 GMT
- Title: Learning Difference-of-Convex Regularizers for Inverse Problems: A Flexible Framework with Theoretical Guarantees
- Authors: Yasi Zhang, Oscar Leong,
- Abstract summary: Learning effective regularization is crucial for solving ill-posed inverse problems.
In this paper, we show that a broader optimal non regularizers functions, difference-of-DC functions, can improve empirical performance.
- Score: 0.6906005491572401
- License:
- Abstract: Learning effective regularization is crucial for solving ill-posed inverse problems, which arise in a wide range of scientific and engineering applications. While data-driven methods that parameterize regularizers using deep neural networks have demonstrated strong empirical performance, they often result in highly nonconvex formulations that lack theoretical guarantees. Recent work has shown that incorporating structured nonconvexity into neural network-based regularizers, such as weak convexity, can strike a balance between empirical performance and theoretical tractability. In this paper, we demonstrate that a broader class of nonconvex functions, difference-of-convex (DC) functions, can yield improved empirical performance while retaining strong convergence guarantees. The DC structure enables the use of well-established optimization algorithms, such as the Difference-of-Convex Algorithm (DCA) and a Proximal Subgradient Method (PSM), which extend beyond standard gradient descent. Furthermore, we provide theoretical insights into the conditions under which optimal regularizers can be expressed as DC functions. Extensive experiments on computed tomography (CT) reconstruction tasks show that our approach achieves strong performance across sparse and limited-view settings, consistently outperforming other weakly supervised learned regularizers. Our code is available at \url{https://github.com/YasminZhang/ADCR}.
Related papers
- A Novel Unified Parametric Assumption for Nonconvex Optimization [53.943470475510196]
Non optimization is central to machine learning, but the general framework non convexity enables weak convergence guarantees too pessimistic compared to the other hand.
We introduce a novel unified assumption in non convex algorithms.
arXiv Detail & Related papers (2025-02-17T21:25:31Z) - Preconditioned Inexact Stochastic ADMM for Deep Model [35.37705488695026]
This paper develops an algorithm, PISA, which enables scalable parallel computing and supports various second-moment schemes.
Grounded in rigorous theoretical guarantees, the algorithm converges under the sole assumption of Lipschitz of the gradient.
Comprehensive experimental evaluations for or fine-tuning diverse FMs, including vision models, large language models, reinforcement learning models, generative adversarial networks, and recurrent neural networks, demonstrate its superior numerical performance compared to various state-of-the-art Directions.
arXiv Detail & Related papers (2025-02-15T12:28:51Z) - Parameter-Efficient Fine-Tuning for Continual Learning: A Neural Tangent Kernel Perspective [125.00228936051657]
We introduce NTK-CL, a novel framework that eliminates task-specific parameter storage while adaptively generating task-relevant features.
By fine-tuning optimizable parameters with appropriate regularization, NTK-CL achieves state-of-the-art performance on established PEFT-CL benchmarks.
arXiv Detail & Related papers (2024-07-24T09:30:04Z) - Efficient Duple Perturbation Robustness in Low-rank MDPs [14.53555781866821]
We introduce duple robustness, i.e. perturbation on both the feature and factor vectors for low-rank Markov decision processes (MDPs)
The novel robust MDP formulation is compatible with the function representation view, and therefore, is naturally applicable to practical RL problems with large or even continuous state-action spaces.
It also gives rise to a provably efficient and practical algorithm with theoretical convergence rate guarantee.
arXiv Detail & Related papers (2024-04-11T19:07:15Z) - Efficient kernel surrogates for neural network-based regression [0.8030359871216615]
We study the performance of the Conjugate Kernel (CK), an efficient approximation to the Neural Tangent Kernel (NTK)
We show that the CK performance is only marginally worse than that of the NTK and, in certain cases, is shown to be superior.
In addition to providing a theoretical grounding for using CKs instead of NTKs, our framework suggests a recipe for improving DNN accuracy inexpensively.
arXiv Detail & Related papers (2023-10-28T06:41:47Z) - Convex Latent-Optimized Adversarial Regularizers for Imaging Inverse
Problems [8.33626757808923]
We introduce Convex Latent-d Adrial Regularizers (CLEAR), a novel and interpretable data-driven paradigm.
CLEAR represents a fusion of deep learning (DL) and variational regularization.
Our method consistently outperforms conventional data-driven techniques and traditional regularization approaches.
arXiv Detail & Related papers (2023-09-17T12:06:04Z) - GloptiNets: Scalable Non-Convex Optimization with Certificates [61.50835040805378]
We present a novel approach to non-cube optimization with certificates, which handles smooth functions on the hypercube or on the torus.
By exploiting the regularity of the target function intrinsic in the decay of its spectrum, we allow at the same time to obtain precise certificates and leverage the advanced and powerful neural networks.
arXiv Detail & Related papers (2023-06-26T09:42:59Z) - Orthogonal SVD Covariance Conditioning and Latent Disentanglement [65.67315418971688]
Inserting an SVD meta-layer into neural networks is prone to make the covariance ill-conditioned.
We propose Nearest Orthogonal Gradient (NOG) and Optimal Learning Rate (OLR)
Experiments on visual recognition demonstrate that our methods can simultaneously improve covariance conditioning and generalization.
arXiv Detail & Related papers (2022-12-11T20:31:31Z) - Learning to Optimize with Stochastic Dominance Constraints [103.26714928625582]
In this paper, we develop a simple yet efficient approach for the problem of comparing uncertain quantities.
We recast inner optimization in the Lagrangian as a learning problem for surrogate approximation, which bypasses apparent intractability.
The proposed light-SD demonstrates superior performance on several representative problems ranging from finance to supply chain management.
arXiv Detail & Related papers (2022-11-14T21:54:31Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.