Learning Difference-of-Convex Regularizers for Inverse Problems: A Flexible Framework with Theoretical Guarantees
- URL: http://arxiv.org/abs/2502.00240v1
- Date: Sat, 01 Feb 2025 00:40:24 GMT
- Title: Learning Difference-of-Convex Regularizers for Inverse Problems: A Flexible Framework with Theoretical Guarantees
- Authors: Yasi Zhang, Oscar Leong,
- Abstract summary: Learning effective regularization is crucial for solving ill-posed inverse problems.<n>In this paper, we show that a broader optimal non regularizers functions, difference-of-DC functions, can improve empirical performance.
- Score: 0.6906005491572401
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning effective regularization is crucial for solving ill-posed inverse problems, which arise in a wide range of scientific and engineering applications. While data-driven methods that parameterize regularizers using deep neural networks have demonstrated strong empirical performance, they often result in highly nonconvex formulations that lack theoretical guarantees. Recent work has shown that incorporating structured nonconvexity into neural network-based regularizers, such as weak convexity, can strike a balance between empirical performance and theoretical tractability. In this paper, we demonstrate that a broader class of nonconvex functions, difference-of-convex (DC) functions, can yield improved empirical performance while retaining strong convergence guarantees. The DC structure enables the use of well-established optimization algorithms, such as the Difference-of-Convex Algorithm (DCA) and a Proximal Subgradient Method (PSM), which extend beyond standard gradient descent. Furthermore, we provide theoretical insights into the conditions under which optimal regularizers can be expressed as DC functions. Extensive experiments on computed tomography (CT) reconstruction tasks show that our approach achieves strong performance across sparse and limited-view settings, consistently outperforming other weakly supervised learned regularizers. Our code is available at \url{https://github.com/YasminZhang/ADCR}.
Related papers
- Supervised Optimism Correction: Be Confident When LLMs Are Sure [91.7459076316849]
We establish a novel theoretical connection between supervised fine-tuning and offline reinforcement learning.
We show that the widely used beam search method suffers from unacceptable over-optimism.
We propose Supervised Optimism Correction, which introduces a simple yet effective auxiliary loss for token-level $Q$-value estimations.
arXiv Detail & Related papers (2025-04-10T07:50:03Z) - A Novel Unified Parametric Assumption for Nonconvex Optimization [53.943470475510196]
Non optimization is central to machine learning, but the general framework non convexity enables weak convergence guarantees too pessimistic compared to the other hand.
We introduce a novel unified assumption in non convex algorithms.
arXiv Detail & Related papers (2025-02-17T21:25:31Z) - Preconditioned Inexact Stochastic ADMM for Deep Model [35.37705488695026]
This paper develops an algorithm, PISA, which enables scalable parallel computing and supports various second-moment schemes.
Grounded in rigorous theoretical guarantees, the algorithm converges under the sole assumption of Lipschitz of the gradient.
Comprehensive experimental evaluations for or fine-tuning diverse FMs, including vision models, large language models, reinforcement learning models, generative adversarial networks, and recurrent neural networks, demonstrate its superior numerical performance compared to various state-of-the-art Directions.
arXiv Detail & Related papers (2025-02-15T12:28:51Z) - Parameter-Efficient Fine-Tuning for Continual Learning: A Neural Tangent Kernel Perspective [125.00228936051657]
We introduce NTK-CL, a novel framework that eliminates task-specific parameter storage while adaptively generating task-relevant features.
By fine-tuning optimizable parameters with appropriate regularization, NTK-CL achieves state-of-the-art performance on established PEFT-CL benchmarks.
arXiv Detail & Related papers (2024-07-24T09:30:04Z) - The Vital Role of Gradient Clipping in Byzantine-Resilient Distributed Learning [8.268485501864939]
Byzantine-resilient distributed machine learning seeks to achieve robust learning performance in the presence of misbehaving or adversarial workers.
While state-of-the-art (SOTA) robust distributed gradient descent (DGD) methods were proven theoretically optimal, their empirical success has often relied on pre-aggregation gradient clipping.
We propose a principled adaptive clipping strategy, termed Adaptive Robust ClippingARC, to improve robustness against some attacks while being ineffective or detrimental against others.
arXiv Detail & Related papers (2024-05-23T11:00:31Z) - Efficient Duple Perturbation Robustness in Low-rank MDPs [14.53555781866821]
We introduce duple robustness, i.e. perturbation on both the feature and factor vectors for low-rank Markov decision processes (MDPs)
The novel robust MDP formulation is compatible with the function representation view, and therefore, is naturally applicable to practical RL problems with large or even continuous state-action spaces.
It also gives rise to a provably efficient and practical algorithm with theoretical convergence rate guarantee.
arXiv Detail & Related papers (2024-04-11T19:07:15Z) - Efficient kernel surrogates for neural network-based regression [0.8030359871216615]
We study the performance of the Conjugate Kernel (CK), an efficient approximation to the Neural Tangent Kernel (NTK)
We show that the CK performance is only marginally worse than that of the NTK and, in certain cases, is shown to be superior.
In addition to providing a theoretical grounding for using CKs instead of NTKs, our framework suggests a recipe for improving DNN accuracy inexpensively.
arXiv Detail & Related papers (2023-10-28T06:41:47Z) - Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
This paper presents a theoretical analysis of linearahead as a principled method for stabilizing (large-scale) neural network training.
We argue that instabilities in the optimization process are often caused by the nonmonotonicity of the loss landscape and show how linear can help by leveraging the theory of nonexpansive operators.
arXiv Detail & Related papers (2023-10-20T12:45:12Z) - Convex Latent-Optimized Adversarial Regularizers for Imaging Inverse
Problems [8.33626757808923]
We introduce Convex Latent-d Adrial Regularizers (CLEAR), a novel and interpretable data-driven paradigm.
CLEAR represents a fusion of deep learning (DL) and variational regularization.
Our method consistently outperforms conventional data-driven techniques and traditional regularization approaches.
arXiv Detail & Related papers (2023-09-17T12:06:04Z) - GloptiNets: Scalable Non-Convex Optimization with Certificates [61.50835040805378]
We present a novel approach to non-cube optimization with certificates, which handles smooth functions on the hypercube or on the torus.
By exploiting the regularity of the target function intrinsic in the decay of its spectrum, we allow at the same time to obtain precise certificates and leverage the advanced and powerful neural networks.
arXiv Detail & Related papers (2023-06-26T09:42:59Z) - Efficient Bound of Lipschitz Constant for Convolutional Layers by Gram
Iteration [122.51142131506639]
We introduce a precise, fast, and differentiable upper bound for the spectral norm of convolutional layers using circulant matrix theory.
We show through a comprehensive set of experiments that our approach outperforms other state-of-the-art methods in terms of precision, computational cost, and scalability.
It proves highly effective for the Lipschitz regularization of convolutional neural networks, with competitive results against concurrent approaches.
arXiv Detail & Related papers (2023-05-25T15:32:21Z) - Orthogonal SVD Covariance Conditioning and Latent Disentanglement [65.67315418971688]
Inserting an SVD meta-layer into neural networks is prone to make the covariance ill-conditioned.
We propose Nearest Orthogonal Gradient (NOG) and Optimal Learning Rate (OLR)
Experiments on visual recognition demonstrate that our methods can simultaneously improve covariance conditioning and generalization.
arXiv Detail & Related papers (2022-12-11T20:31:31Z) - Learning to Optimize with Stochastic Dominance Constraints [103.26714928625582]
In this paper, we develop a simple yet efficient approach for the problem of comparing uncertain quantities.
We recast inner optimization in the Lagrangian as a learning problem for surrogate approximation, which bypasses apparent intractability.
The proposed light-SD demonstrates superior performance on several representative problems ranging from finance to supply chain management.
arXiv Detail & Related papers (2022-11-14T21:54:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.