EDELINE: Enhancing Memory in Diffusion-based World Models via Linear-Time Sequence Modeling
- URL: http://arxiv.org/abs/2502.00466v2
- Date: Sun, 15 Jun 2025 17:04:54 GMT
- Title: EDELINE: Enhancing Memory in Diffusion-based World Models via Linear-Time Sequence Modeling
- Authors: Jia-Hua Lee, Bor-Jiun Lin, Wei-Fang Sun, Chun-Yi Lee,
- Abstract summary: We introduce EDELINE, a unified world model architecture that integrates state space models with diffusion models.<n>Our approach outperforms existing baselines across visually challenging Atari 100k tasks, memory-demanding benchmark, and 3D first-person ViZDoom environments.
- Score: 8.250616459360684
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: World models represent a promising approach for training reinforcement learning agents with significantly improved sample efficiency. While most world model methods primarily rely on sequences of discrete latent variables to model environment dynamics, this compression often neglects critical visual details essential for reinforcement learning. Recent diffusion-based world models condition generation on a fixed context length of frames to predict the next observation, using separate recurrent neural networks to model rewards and termination signals. Although this architecture effectively enhances visual fidelity, the fixed context length approach inherently limits memory capacity. In this paper, we introduce EDELINE, a unified world model architecture that integrates state space models with diffusion models. Our approach outperforms existing baselines across visually challenging Atari 100k tasks, memory-demanding Crafter benchmark, and 3D first-person ViZDoom environments, demonstrating superior performance in all these diverse challenges.
Related papers
- Time Series Generation Under Data Scarcity: A Unified Generative Modeling Approach [7.631288333466648]
We conduct the first large-scale study evaluating leading generative models in data-scarce settings.<n>We propose a unified diffusion-based generative framework that can synthesize high-fidelity time series using just a few examples.
arXiv Detail & Related papers (2025-05-26T18:39:04Z) - Consistent World Models via Foresight Diffusion [56.45012929930605]
We argue that a key bottleneck in learning consistent diffusion-based world models lies in the suboptimal predictive ability.<n>We propose Foresight Diffusion (ForeDiff), a diffusion-based world modeling framework that enhances consistency by decoupling condition understanding from target denoising.
arXiv Detail & Related papers (2025-05-22T10:01:59Z) - World Model-Based Learning for Long-Term Age of Information Minimization in Vehicular Networks [53.98633183204453]
In this paper, a novel world model-based learning framework is proposed to minimize packet-completeness-aware age of information (CAoI) in a vehicular network.<n>A world model framework is proposed to jointly learn a dynamic model of the mmWave V2X environment and use it to imagine trajectories for learning how to perform link scheduling.<n>In particular, the long-term policy is learned in differentiable imagined trajectories instead of environment interactions.
arXiv Detail & Related papers (2025-05-03T06:23:18Z) - Learning Transformer-based World Models with Contrastive Predictive Coding [58.0159270859475]
We show that the next state prediction objective is insufficient to fully exploit the representation capabilities of Transformers.<n>We propose to extend world model predictions to longer time horizons by introducing TWISTER, a world model using action-conditioned Contrastive Predictive Coding.<n>TWISTER achieves a human-normalized mean score of 162% on the Atari 100k benchmark, setting a new record among state-of-the-art methods that do not employ look-ahead search.
arXiv Detail & Related papers (2025-03-06T13:18:37Z) - Exploring Representation-Aligned Latent Space for Better Generation [86.45670422239317]
We introduce ReaLS, which integrates semantic priors to improve generation performance.<n>We show that fundamental DiT and SiT trained on ReaLS can achieve a 15% improvement in FID metric.<n>The enhanced semantic latent space enables more perceptual downstream tasks, such as segmentation and depth estimation.
arXiv Detail & Related papers (2025-02-01T07:42:12Z) - Merging Models on the Fly Without Retraining: A Sequential Approach to Scalable Continual Model Merging [75.93960998357812]
Deep model merging represents an emerging research direction that combines multiple fine-tuned models to harness their capabilities across different tasks and domains.
Current model merging techniques focus on merging all available models simultaneously, with weight matrices-based methods being the predominant approaches.
We propose a training-free projection-based continual merging method that processes models sequentially.
arXiv Detail & Related papers (2025-01-16T13:17:24Z) - Masked Generative Priors Improve World Models Sequence Modelling Capabilities [19.700020499490137]
Masked Generative Modelling has emerged as a more efficient and superior inductive bias for modelling.<n>GIT-STORM demonstrates substantial performance gains in RL tasks on the Atari 100k benchmark.<n>We apply Transformer-based World Models to continuous action environments for the first time, addressing a significant gap in prior research.
arXiv Detail & Related papers (2024-10-10T11:52:07Z) - Amortized Control of Continuous State Space Feynman-Kac Model for Irregular Time Series [14.400596021890863]
Many real-world datasets, such as healthcare, climate, and economics, are often collected as irregular time series.
We propose the Amortized Control of continuous State Space Model (ACSSM) for continuous dynamical modeling of time series.
arXiv Detail & Related papers (2024-10-08T01:27:46Z) - Oscillatory State-Space Models [61.923849241099184]
We propose Lineary State-Space models (LinOSS) for efficiently learning on long sequences.
A stable discretization, integrated over time using fast associative parallel scans, yields the proposed state-space model.
We show that LinOSS is universal, i.e., it can approximate any continuous and causal operator mapping between time-varying functions.
arXiv Detail & Related papers (2024-10-04T22:00:13Z) - Longhorn: State Space Models are Amortized Online Learners [51.10124201221601]
State-space models (SSMs) offer linear decoding efficiency while maintaining parallelism during training.
In this work, we explore SSM design through the lens of online learning, conceptualizing SSMs as meta-modules for specific online learning problems.
We introduce a novel deep SSM architecture, Longhorn, whose update resembles the closed-form solution for solving the online associative recall problem.
arXiv Detail & Related papers (2024-07-19T11:12:08Z) - Optimization of geological carbon storage operations with multimodal latent dynamic model and deep reinforcement learning [1.8549313085249324]
This study introduces the multimodal latent dynamic (MLD) model, a deep learning framework for fast flow prediction and well control optimization in GCS.
Unlike existing models, the MLD supports diverse input modalities, allowing comprehensive data interactions.
The approach outperforms traditional methods, achieving the highest NPV while reducing computational resources by over 60%.
arXiv Detail & Related papers (2024-06-07T01:30:21Z) - State Space Models as Foundation Models: A Control Theoretic Overview [3.3222241150972356]
In recent years, there has been a growing interest in integrating linear state-space models (SSM) in deep neural network architectures.
This paper is intended as a gentle introduction to SSM-based architectures for control theorists.
It provides a systematic review of the most successful SSM proposals and highlights their main features from a control theoretic perspective.
arXiv Detail & Related papers (2024-03-25T16:10:47Z) - Orchid: Flexible and Data-Dependent Convolution for Sequence Modeling [4.190836962132713]
This paper introduces Orchid, a novel architecture designed to address the quadratic complexity of traditional attention mechanisms.
At the core of this architecture lies a new data-dependent global convolution layer, which contextually adapts its conditioned kernel on input sequence.
We evaluate the proposed model across multiple domains, including language modeling and image classification, to highlight its performance and generality.
arXiv Detail & Related papers (2024-02-28T17:36:45Z) - Attractor Memory for Long-Term Time Series Forecasting: A Chaos Perspective [63.60312929416228]
textbftextitAttraos incorporates chaos theory into long-term time series forecasting.
We show that Attraos outperforms various LTSF methods on mainstream datasets and chaotic datasets with only one-twelfth of the parameters compared to PatchTST.
arXiv Detail & Related papers (2024-02-18T05:35:01Z) - Data-efficient Large Vision Models through Sequential Autoregression [58.26179273091461]
We develop an efficient, autoregression-based vision model on a limited dataset.
We demonstrate how this model achieves proficiency in a spectrum of visual tasks spanning both high-level and low-level semantic understanding.
Our empirical evaluations underscore the model's agility in adapting to various tasks, heralding a significant reduction in the parameter footprint.
arXiv Detail & Related papers (2024-02-07T13:41:53Z) - Pre-training Contextualized World Models with In-the-wild Videos for
Reinforcement Learning [54.67880602409801]
In this paper, we study the problem of pre-training world models with abundant in-the-wild videos for efficient learning of visual control tasks.
We introduce Contextualized World Models (ContextWM) that explicitly separate context and dynamics modeling.
Our experiments show that in-the-wild video pre-training equipped with ContextWM can significantly improve the sample efficiency of model-based reinforcement learning.
arXiv Detail & Related papers (2023-05-29T14:29:12Z) - Evolve Smoothly, Fit Consistently: Learning Smooth Latent Dynamics For
Advection-Dominated Systems [14.553972457854517]
We present a data-driven, space-time continuous framework to learn surrogatemodels for complex physical systems.
We leverage the expressive power of the network and aspecially designed consistency-inducing regularization to obtain latent trajectories that are both low-dimensional and smooth.
arXiv Detail & Related papers (2023-01-25T03:06:03Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Autoregressive Dynamics Models for Offline Policy Evaluation and
Optimization [60.73540999409032]
We show that expressive autoregressive dynamics models generate different dimensions of the next state and reward sequentially conditioned on previous dimensions.
We also show that autoregressive dynamics models are useful for offline policy optimization by serving as a way to enrich the replay buffer.
arXiv Detail & Related papers (2021-04-28T16:48:44Z) - Normalizing Flows with Multi-Scale Autoregressive Priors [131.895570212956]
We introduce channel-wise dependencies in their latent space through multi-scale autoregressive priors (mAR)
Our mAR prior for models with split coupling flow layers (mAR-SCF) can better capture dependencies in complex multimodal data.
We show that mAR-SCF allows for improved image generation quality, with gains in FID and Inception scores compared to state-of-the-art flow-based models.
arXiv Detail & Related papers (2020-04-08T09:07:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.