NAVER: A Neuro-Symbolic Compositional Automaton for Visual Grounding with Explicit Logic Reasoning
- URL: http://arxiv.org/abs/2502.00372v1
- Date: Sat, 01 Feb 2025 09:19:08 GMT
- Title: NAVER: A Neuro-Symbolic Compositional Automaton for Visual Grounding with Explicit Logic Reasoning
- Authors: Zhixi Cai, Fucai Ke, Simindokht Jahangard, Maria Garcia de la Banda, Reza Haffari, Peter J. Stuckey, Hamid Rezatofighi,
- Abstract summary: This paper explores challenges for methods that require reasoning like human cognition.
We propose NAVER, a compositional visual grounding method that integrates explicit probabilistic logic reasoning.
Our results show that NAVER achieves SoTA performance comparing to recent end-to-end and compositional baselines.
- Score: 22.60247555240363
- License:
- Abstract: Visual Grounding (VG) tasks, such as referring expression detection and segmentation tasks are important for linking visual entities to context, especially in complex reasoning tasks that require detailed query interpretation. This paper explores VG beyond basic perception, highlighting challenges for methods that require reasoning like human cognition. Recent advances in large language methods (LLMs) and Vision-Language methods (VLMs) have improved abilities for visual comprehension, contextual understanding, and reasoning. These methods are mainly split into end-to-end and compositional methods, with the latter offering more flexibility. Compositional approaches that integrate LLMs and foundation models show promising performance but still struggle with complex reasoning with language-based logical representations. To address these limitations, we propose NAVER, a compositional visual grounding method that integrates explicit probabilistic logic reasoning within a finite-state automaton, equipped with a self-correcting mechanism. This design improves robustness and interpretability in inference through explicit logic reasoning. Our results show that NAVER achieves SoTA performance comparing to recent end-to-end and compositional baselines. The code is available at https://github.com/ControlNet/NAVER .
Related papers
- Reasoning with Graphs: Structuring Implicit Knowledge to Enhance LLMs Reasoning [73.2950349728376]
Large language models (LLMs) have demonstrated remarkable success across a wide range of tasks.
However, they still encounter challenges in reasoning tasks that require understanding and inferring relationships between pieces of information.
This challenge is particularly pronounced in tasks involving multi-step processes, such as logical reasoning and multi-hop question answering.
We propose Reasoning with Graphs (RwG) by first constructing explicit graphs from the context.
arXiv Detail & Related papers (2025-01-14T05:18:20Z) - Proof of Thought : Neurosymbolic Program Synthesis allows Robust and Interpretable Reasoning [1.3003982724617653]
Large Language Models (LLMs) have revolutionized natural language processing, yet they struggle with inconsistent reasoning.
This research introduces Proof of Thought, a framework that enhances the reliability and transparency of LLM outputs.
Key contributions include a robust type system with sort management for enhanced logical integrity, explicit representation of rules for clear distinction between factual and inferential knowledge.
arXiv Detail & Related papers (2024-09-25T18:35:45Z) - H-STAR: LLM-driven Hybrid SQL-Text Adaptive Reasoning on Tables [56.73919743039263]
This paper introduces a novel algorithm that integrates both symbolic and semantic (textual) approaches in a two-stage process to address limitations.
Our experiments demonstrate that H-STAR significantly outperforms state-of-the-art methods across three question-answering (QA) and fact-verification datasets.
arXiv Detail & Related papers (2024-06-29T21:24:19Z) - Investigating Video Reasoning Capability of Large Language Models with Tropes in Movies [69.28082193942991]
This paper introduces a novel dataset, Tropes in Movies (TiM), designed as a testbed for exploring two critical yet previously overlooked video reasoning skills.
utilizing tropes from movie storytelling, TiM evaluates the reasoning capabilities of state-of-the-art LLM-based approaches.
To address these deficiencies, we propose Face-Enhanced Viper of Role Interactions (FEVoRI) and Context Query Reduction (ConQueR)
arXiv Detail & Related papers (2024-06-16T12:58:31Z) - DeiSAM: Segment Anything with Deictic Prompting [26.38776252198988]
DeiSAM is a combination of large pre-trained neural networks with differentiable logic reasoners.
It segments objects by matching them to logically inferred image regions.
Our empirical results demonstrate that DeiSAM is a substantial improvement over purely data-driven baselines.
arXiv Detail & Related papers (2024-02-21T20:43:49Z) - 3VL: Using Trees to Improve Vision-Language Models' Interpretability [40.678288227161936]
Vision-Language models (VLMs) have proven to be effective at aligning image and text representations, producing superior zero-shot results when transferred to many downstream tasks.
These representations suffer from some key shortcomings in understanding Compositional Language Concepts (CLC), such as recognizing objects' attributes, states, and relations between different objects.
In this work, we introduce the architecture and training technique of Tree-augmented Vision-Language (3VL) model accompanied by our proposed Anchor inference method and Differential Relevance (DiRe) interpretability tool.
arXiv Detail & Related papers (2023-12-28T20:26:03Z) - LOGICSEG: Parsing Visual Semantics with Neural Logic Learning and
Reasoning [73.98142349171552]
LOGICSEG is a holistic visual semantic that integrates neural inductive learning and logic reasoning with both rich data and symbolic knowledge.
During fuzzy logic-based continuous relaxation, logical formulae are grounded onto data and neural computational graphs, hence enabling logic-induced network training.
These designs together make LOGICSEG a general and compact neural-logic machine that is readily integrated into existing segmentation models.
arXiv Detail & Related papers (2023-09-24T05:43:19Z) - Modeling Hierarchical Reasoning Chains by Linking Discourse Units and
Key Phrases for Reading Comprehension [80.99865844249106]
We propose a holistic graph network (HGN) which deals with context at both discourse level and word level, as the basis for logical reasoning.
Specifically, node-level and type-level relations, which can be interpreted as bridges in the reasoning process, are modeled by a hierarchical interaction mechanism.
arXiv Detail & Related papers (2023-06-21T07:34:27Z) - Im-Promptu: In-Context Composition from Image Prompts [10.079743487034762]
We investigate whether analogical reasoning can enable in-context composition over composable elements of visual stimuli.
We use Im-Promptu to train agents with different levels of compositionality, including vector representations, patch representations, and object slots.
Our experiments reveal tradeoffs between extrapolation abilities and the degree of compositionality, with non-compositional representations extending learned composition rules to unseen domains but performing poorly on tasks.
arXiv Detail & Related papers (2023-05-26T21:10:11Z) - Infusing Finetuning with Semantic Dependencies [62.37697048781823]
We show that, unlike syntax, semantics is not brought to the surface by today's pretrained models.
We then use convolutional graph encoders to explicitly incorporate semantic parses into task-specific finetuning.
arXiv Detail & Related papers (2020-12-10T01:27:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.