論文の概要: Efficient Adaptive Label Refinement for Label Noise Learning
- arxiv url: http://arxiv.org/abs/2502.00386v1
- Date: Sat, 01 Feb 2025 09:58:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 14:59:47.991653
- Title: Efficient Adaptive Label Refinement for Label Noise Learning
- Title(参考訳): ラベル雑音学習のための適応ラベルの効率的なリファインメント
- Authors: Wenzhen Zhang, Debo Cheng, Guangquan Lu, Bo Zhou, Jiaye Li, Shichao Zhang,
- Abstract要約: 本稿では,不適切なラベルを回避し,クリーンなサンプルを徹底的に学習するための適応ラベル精製(ALR)を提案する。
ALRは単純で効率的であり、ノイズや補助的なデータセットに関する事前の知識を必要としない。
人工ラベルノイズ付きベンチマークデータセット(CIFAR-10/100)と固有ノイズ付き実世界のデータセット(ANIMAL-10N, Clothing1M, WebVision)を用いて、ALRの有効性を検証する。
- 参考スコア(独自算出の注目度): 14.617885790129336
- License:
- Abstract: Deep neural networks are highly susceptible to overfitting noisy labels, which leads to degraded performance. Existing methods address this issue by employing manually defined criteria, aiming to achieve optimal partitioning in each iteration to avoid fitting noisy labels while thoroughly learning clean samples. However, this often results in overly complex and difficult-to-train models. To address this issue, we decouple the tasks of avoiding fitting incorrect labels and thoroughly learning clean samples and propose a simple yet highly applicable method called Adaptive Label Refinement (ALR). First, inspired by label refurbishment techniques, we update the original hard labels to soft labels using the model's predictions to reduce the risk of fitting incorrect labels. Then, by introducing the entropy loss, we gradually `harden' the high-confidence soft labels, guiding the model to better learn from clean samples. This approach is simple and efficient, requiring no prior knowledge of noise or auxiliary datasets, making it more accessible compared to existing methods. We validate ALR's effectiveness through experiments on benchmark datasets with artificial label noise (CIFAR-10/100) and real-world datasets with inherent noise (ANIMAL-10N, Clothing1M, WebVision). The results show that ALR outperforms state-of-the-art methods.
- Abstract(参考訳): ディープニューラルネットワークはノイズラベルの過度な適合に非常に敏感であり、性能低下につながる。
既存の手法では、手動で定義された基準を採用し、各イテレーションで最適なパーティショニングを実現し、ノイズの多いラベルの適合を避けながら、クリーンなサンプルを徹底的に学習することを目的としている。
しかし、これはしばしば過度に複雑で訓練が難しいモデルをもたらす。
この問題に対処するため,不適切なラベルの適合を回避し,クリーンなサンプルを徹底的に学習するタスクを分離し,適応ラベルリファインメント (ALR) と呼ばれるシンプルで高度に適用可能な手法を提案する。
まず, ラベル改質技術に触発されて, モデルの予測を用いて, 元のハードラベルをソフトラベルに更新し, 不正ラベルの適合リスクを低減する。
そして,エントロピー損失を導入することで,信頼性の高いソフトラベルを徐々に「ハード」し,クリーンなサンプルから学習するモデルを導く。
このアプローチは単純で効率的で、ノイズや補助的なデータセットに関する事前の知識を必要としないため、既存の方法よりもアクセスしやすい。
人工ラベルノイズ(CIFAR-10/100)と固有ノイズ(ANIMAL-10N, Clothing1M, WebVision)のベンチマークデータセットを用いて, ALRの有効性を検証する。
その結果, ALRは最先端の手法よりも優れていた。
関連論文リスト
- Mitigating Instance-Dependent Label Noise: Integrating Self-Supervised Pretraining with Pseudo-Label Refinement [3.272177633069322]
実世界のデータセットは、アノテーションプロセス中にヒューマンエラー、あいまいさ、リソース制約のために、ノイズの多いラベルを含むことが多い。
そこで本研究では,SimCLRを用いた自己教師型学習と反復的擬似ラベル改良を組み合わせた新しいフレームワークを提案する。
提案手法は,特に高騒音条件下では,いくつかの最先端手法よりも優れる。
論文 参考訳(メタデータ) (2024-12-06T09:56:49Z) - Extracting Clean and Balanced Subset for Noisy Long-tailed Classification [66.47809135771698]
そこで我々は,分布マッチングの観点から,クラスプロトタイプを用いた新しい擬似ラベリング手法を開発した。
手動で特定の確率尺度を設定することで、ノイズと長い尾を持つデータの副作用を同時に減らすことができる。
本手法は, クリーンなラベル付きクラスバランスサブセットを抽出し, ラベルノイズ付きロングテール分類において, 効果的な性能向上を実現する。
論文 参考訳(メタデータ) (2024-04-10T07:34:37Z) - Group Benefits Instances Selection for Data Purification [21.977432359384835]
ラベルノイズと戦う既存の方法は通常、合成データセット上で設計およびテストされる。
本稿では,合成および実世界の両方のデータセットに対するノイズラベル問題を緩和するGRIPという手法を提案する。
論文 参考訳(メタデータ) (2024-03-23T03:06:19Z) - Label-Retrieval-Augmented Diffusion Models for Learning from Noisy
Labels [61.97359362447732]
ノイズの多いラベルからの学習は、実際のアプリケーションのための機械学習において、重要かつ長年にわたる問題である。
本稿では,生成モデルの観点からラベルノイズ問題を再構成する。
我々のモデルは、標準的な実世界のベンチマークデータセットで新しいSOTA(State-of-the-art)結果を達成する。
論文 参考訳(メタデータ) (2023-05-31T03:01:36Z) - Neighborhood Collective Estimation for Noisy Label Identification and
Correction [92.20697827784426]
ノイズラベルを用いた学習(LNL)は,ノイズラベルに対するモデルオーバーフィットの効果を軽減し,モデル性能と一般化を改善するための戦略を設計することを目的としている。
近年の進歩は、個々のサンプルのラベル分布を予測し、ノイズ検証とノイズラベル補正を行い、容易に確認バイアスを生じさせる。
提案手法では, 候補サンプルの予測信頼性を, 特徴空間近傍と対比することにより再推定する。
論文 参考訳(メタデータ) (2022-08-05T14:47:22Z) - Sample Prior Guided Robust Model Learning to Suppress Noisy Labels [8.119439844514973]
本稿では,サンプルの事前知識を発生させることで雑音を抑えるための深層モデルの学習を行う新しいフレームワークPGDFを提案する。
我々のフレームワークは、より有益なハードクリーンなサンプルをクリーンにラベル付けされたセットに保存することができる。
我々は,CIFAR-10とCIFAR-100に基づく合成データセットと,WebVisionとChrothing1Mを用いた実世界のデータセットを用いて評価を行った。
論文 参考訳(メタデータ) (2021-12-02T13:09:12Z) - S3: Supervised Self-supervised Learning under Label Noise [53.02249460567745]
本稿では,ラベルノイズの存在下での分類の問題に対処する。
提案手法の核心は,サンプルのアノテートラベルと特徴空間内のその近傍のラベルの分布との整合性に依存するサンプル選択機構である。
提案手法は,CIFARCIFAR100とWebVisionやANIMAL-10Nなどの実環境ノイズデータセットの両方で,従来の手法をはるかに上回っている。
論文 参考訳(メタデータ) (2021-11-22T15:49:20Z) - An Ensemble Noise-Robust K-fold Cross-Validation Selection Method for
Noisy Labels [0.9699640804685629]
大規模なデータセットには、ディープニューラルネットワーク(DNN)によって記憶されるような、ラベルのずれたサンプルが含まれている傾向があります。
本稿では, ノイズデータからクリーンなサンプルを効果的に選択するために, アンサンブルノイズ・ロバスト K-fold Cross-Validation Selection (E-NKCVS) を提案する。
我々は,ラベルが手動で異なる雑音比で破損した様々な画像・テキスト分類タスクに対するアプローチを評価する。
論文 参考訳(メタデータ) (2021-07-06T02:14:52Z) - Tackling Instance-Dependent Label Noise via a Universal Probabilistic
Model [80.91927573604438]
本稿では,ノイズラベルをインスタンスに明示的に関連付ける,単純かつ普遍的な確率モデルを提案する。
合成および実世界のラベルノイズを用いたデータセット実験により,提案手法がロバスト性に大きな改善をもたらすことを確認した。
論文 参考訳(メタデータ) (2021-01-14T05:43:51Z) - Learning to Purify Noisy Labels via Meta Soft Label Corrector [49.92310583232323]
最近のディープニューラルネットワーク(DNN)は、ノイズラベルによるバイアス付きトレーニングデータに容易に適合する。
ラベル修正戦略はこの問題を軽減するために一般的に用いられる。
メタ学習モデルを提案する。
論文 参考訳(メタデータ) (2020-08-03T03:25:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。