On Multiquantum Bits, Segre Embeddings and Coxeter Chambers
- URL: http://arxiv.org/abs/2502.00461v1
- Date: Sat, 01 Feb 2025 15:39:28 GMT
- Title: On Multiquantum Bits, Segre Embeddings and Coxeter Chambers
- Authors: NoƩmie C. Combe,
- Abstract summary: We develop a systematic study of qubit moduli spaces, illustrating the geometric structure of entanglement through hypercube constructions and Coxeter chamber decompositions.
This reveals a structure underlying the hierarchy of embeddings, with direct implications for quantum error correction schemes.
The symmetry of the Segre variety under the Coxeter group of type $A$ allows us to analyze quantum states and errors through the lens of reflection groups.
- Score: 0.0
- License:
- Abstract: This work explores the interplay between quantum information theory, algebraic geometry, and number theory, with a particular focus on multiqubit systems, their entanglement structure, and their classification via geometric embeddings. The Segre embedding, a fundamental construction in algebraic geometry, provides an algebraic framework to distinguish separable and entangled states, encoding quantum correlations in projective geometry. We develop a systematic study of qubit moduli spaces, illustrating the geometric structure of entanglement through hypercube constructions and Coxeter chamber decompositions. We establish a bijection between the Segre embeddings of tensor products of projective spaces and binary words of length $n-1$, structured as an $(n-1)$-dimensional hypercube, where adjacency corresponds to a single Segre operation. This reveals a combinatorial structure underlying the hierarchy of embeddings, with direct implications for quantum error correction schemes. The symmetry of the Segre variety under the Coxeter group of type $A$ allows us to analyze quantum states and errors through the lens of reflection groups, viewing separable states as lying in distinct Coxeter chambers on a Segre variety. The transitive action of the permutation group on these chambers provides a natural method for tracking errors in quantum states and potentially reversing them. Beyond foundational aspects, we highlight relations between Segre varieties and Dixon elliptic curves, drawing connections between entanglement and number theory.
Related papers
- Relational Quantum Geometry [0.0]
We identify non-commutative or quantum geometry as a mathematical framework which unifies three objects.
We first provide a rigorous account of the extended phase space, and demonstrate that it can be regarded as a classical principal bundle with a Poisson manifold base.
We conclude that the quantum orbifold is equivalent to the G-framed algebra proposed in prior work.
arXiv Detail & Related papers (2024-10-14T19:29:27Z) - Galois Symmetries in the Classification and Quantification of Quantum Entanglement [0.0]
We present a new interpretation of entanglement classification by revealing a profound connection to Galois groups.
This work bridges the mathematical elegance of Galois theory with the complexities of quantum mechanics, opening pathways for advances in quantum computing and information theory.
arXiv Detail & Related papers (2024-10-10T20:58:23Z) - Geometry of degenerate quantum states, configurations of $m$-planes and invariants on complex Grassmannians [55.2480439325792]
We show how to reduce the geometry of degenerate states to the non-abelian connection $A$.
We find independent invariants associated with each triple of subspaces.
Some of them generalize the Berry-Pancharatnam phase, and some do not have analogues for 1-dimensional subspaces.
arXiv Detail & Related papers (2024-04-04T06:39:28Z) - Gaussian Entanglement Measure: Applications to Multipartite Entanglement
of Graph States and Bosonic Field Theory [50.24983453990065]
An entanglement measure based on the Fubini-Study metric has been recently introduced by Cocchiarella and co-workers.
We present the Gaussian Entanglement Measure (GEM), a generalization of geometric entanglement measure for multimode Gaussian states.
By providing a computable multipartite entanglement measure for systems with a large number of degrees of freedom, we show that our definition can be used to obtain insights into a free bosonic field theory.
arXiv Detail & Related papers (2024-01-31T15:50:50Z) - Dynamics and Geometry of Entanglement in Many-Body Quantum Systems [0.0]
A new framework is formulated to study entanglement dynamics in many-body quantum systems.
The Quantum Correlation Transfer Function (QCTF) is transformed into a new space of complex functions with isolated singularities.
The QCTF-based geometric description offers the prospect of theoretically revealing aspects of many-body entanglement.
arXiv Detail & Related papers (2023-08-18T19:16:44Z) - Deep Learning Symmetries and Their Lie Groups, Algebras, and Subalgebras
from First Principles [55.41644538483948]
We design a deep-learning algorithm for the discovery and identification of the continuous group of symmetries present in a labeled dataset.
We use fully connected neural networks to model the transformations symmetry and the corresponding generators.
Our study also opens the door for using a machine learning approach in the mathematical study of Lie groups and their properties.
arXiv Detail & Related papers (2023-01-13T16:25:25Z) - Penrose dodecahedron, Witting configuration and quantum entanglement [55.2480439325792]
A model with two entangled spin-3/2 particles based on geometry of dodecahedron was suggested by Roger Penrose.
The model was later reformulated using so-called Witting configuration with 40 rays in 4D Hilbert space.
Two entangled systems with quantum states described by Witting configurations are discussed in presented work.
arXiv Detail & Related papers (2022-08-29T14:46:44Z) - Pointillisme \`a la Signac and Construction of a Pseudo Quantum Phase
Space [0.0]
We construct a quantum-mechanical substitute for the symplectic phase space.
The total space of this fiber bundle consists of geometric quantum states.
We show that the set of equivalence classes of unitarily related geometric quantum states is in a one-to-one correspondence with the set of all Gaussian wavepackets.
arXiv Detail & Related papers (2022-07-31T16:43:06Z) - A singular Riemannian geometry approach to Deep Neural Networks I.
Theoretical foundations [77.86290991564829]
Deep Neural Networks are widely used for solving complex problems in several scientific areas, such as speech recognition, machine translation, image analysis.
We study a particular sequence of maps between manifold, with the last manifold of the sequence equipped with a Riemannian metric.
We investigate the theoretical properties of the maps of such sequence, eventually we focus on the case of maps between implementing neural networks of practical interest.
arXiv Detail & Related papers (2021-12-17T11:43:30Z) - Symmetries and Geometries of Qubits, and their Uses [0.0]
Review of Felix Klein's Erlangen Program for symmetries and geometries.
15 continuous SU(4) Lie generators of two-qubits can be placed in one-to-one correspondence with finite projective geometries.
Extensions are considered for multiple qubits and higher spin or higher dimensional qudits.
arXiv Detail & Related papers (2021-03-25T19:49:22Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.