Dynamics and Geometry of Entanglement in Many-Body Quantum Systems
- URL: http://arxiv.org/abs/2308.09784v2
- Date: Fri, 25 Oct 2024 14:35:57 GMT
- Title: Dynamics and Geometry of Entanglement in Many-Body Quantum Systems
- Authors: Peyman Azodi, Herschel A Rabitz,
- Abstract summary: A new framework is formulated to study entanglement dynamics in many-body quantum systems.
The Quantum Correlation Transfer Function (QCTF) is transformed into a new space of complex functions with isolated singularities.
The QCTF-based geometric description offers the prospect of theoretically revealing aspects of many-body entanglement.
- Score: 0.0
- License:
- Abstract: A new framework is formulated to study entanglement dynamics in many-body quantum systems along with an associated geometric description. In this formulation, called the Quantum Correlation Transfer Function (QCTF), the system's wave function or density matrix is transformed into a new space of complex functions with isolated singularities. Accordingly, entanglement dynamics is encoded in specific residues of the QCTF, and importantly, the explicit evaluation of the system's time dependence is avoided. Notably, the QCTF formulation allows for various algebraic simplifications and approximations to address the normally encountered complications due to the exponential growth of the many-body Hilbert space with the number of bodies. These simplifications are facilitated through considering the patterns, in lieu of the elements, lying within the system's state. Consequently, a main finding of this paper is the exterior (Grassmannian) algebraic expression of many-body entanglement as the collective areas of regions in the Hilbert space spanned by pairs of projections of the wave function onto an arbitrary basis. This latter geometric measure is shown to be equivalent to the second-order R\'enyi entropy. Additionally, the geometric description of the QCTF shows that characterizing features of the reduced density matrix can be related to experimentally observable quantities. The QCTF-based geometric description offers the prospect of theoretically revealing aspects of many-body entanglement, by drawing on the vast scope of methods from geometry.
Related papers
- Hilbert space geometry and quantum chaos [39.58317527488534]
We consider the symmetric part of the QGT for various multi-parametric random matrix Hamiltonians.
We find for a two-dimensional parameter space that, while the ergodic phase corresponds to the smooth manifold, the integrable limit marks itself as a singular geometry with a conical defect.
arXiv Detail & Related papers (2024-11-18T19:00:17Z) - Quantum geometry in many-body systems with precursors of criticality [0.0]
We analyze the geometry of the ground-state manifold in parameter-dependent many-body systems with quantum phase transitions (QPTs)
We elucidate the role of diabolic points in the formation of first-order QPTs, showing that these isolated geometric singularities represent seeds generating irregular behavior of geodesics in finite systems.
arXiv Detail & Related papers (2024-11-06T15:06:05Z) - Gaussian Entanglement Measure: Applications to Multipartite Entanglement
of Graph States and Bosonic Field Theory [50.24983453990065]
An entanglement measure based on the Fubini-Study metric has been recently introduced by Cocchiarella and co-workers.
We present the Gaussian Entanglement Measure (GEM), a generalization of geometric entanglement measure for multimode Gaussian states.
By providing a computable multipartite entanglement measure for systems with a large number of degrees of freedom, we show that our definition can be used to obtain insights into a free bosonic field theory.
arXiv Detail & Related papers (2024-01-31T15:50:50Z) - Machine learning detects terminal singularities [49.1574468325115]
Q-Fano varieties are positively curved shapes which have Q-factorial terminal singularities.
Despite their importance, the classification of Q-Fano varieties remains unknown.
In this paper we demonstrate that machine learning can be used to understand this classification.
arXiv Detail & Related papers (2023-10-31T13:51:24Z) - Generalized quantum geometric tensor for excited states using the path
integral approach [0.0]
The quantum geometric tensor encodes the parameter space geometry of a physical system.
We first provide a formulation of the quantum geometrical tensor in the path integral formalism that can handle both the ground and excited states.
We then generalize the quantum geometric tensor to incorporate variations of the system parameters and the phase-space coordinates.
arXiv Detail & Related papers (2023-05-19T08:50:46Z) - Quantum signal processing with continuous variables [0.0]
Quantum singular value transformation (QSVT) enables the application of functions to singular values of near arbitrary linear operators embedded in unitary transforms.
We show that one can recover a QSP-type ansatz, and show its ability to approximate near arbitrary transformations.
We discuss various experimental uses of this construction, as well as prospects for expanded relevance of QSP-like ans"atze to other Lie groups.
arXiv Detail & Related papers (2023-04-27T17:50:16Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Filtering of higher-dimensional entanglement networks using information
volumes [0.0]
We introduce a novel geometric approach to characterize entanglement relations in large quantum systems.
Our approach is inspired by Schumacher's singlet state triangle inequality, which used an entropic-based distance to capture the strange properties of entanglement.
arXiv Detail & Related papers (2021-06-23T16:24:44Z) - Quantum Relativity of Subsystems [58.720142291102135]
We show that different reference frame perspectives induce different sets of subsystem observable algebras, which leads to a gauge-invariant, frame-dependent notion of subsystems and entanglement.
Such a QRF perspective does not inherit the distinction between subsystems in terms of the corresponding tensor factorizability of the kinematical Hilbert space and observable algebra.
Since the condition for this to occur is contingent on the choice of QRF, the notion of subsystem locality is frame-dependent.
arXiv Detail & Related papers (2021-03-01T19:00:01Z) - Solution to the Quantum Symmetric Simple Exclusion Process : the
Continuous Case [0.0]
We present a solution for the invariant probability measure of the one dimensional Q-SSEP in the infinite size limit.
We incidentally point out a possible interpretation of the Q-SSEP correlation functions via a surprising conneatorics and the associahedron polytopes.
arXiv Detail & Related papers (2020-06-22T13:20:40Z) - Probing chiral edge dynamics and bulk topology of a synthetic Hall
system [52.77024349608834]
Quantum Hall systems are characterized by the quantization of the Hall conductance -- a bulk property rooted in the topological structure of the underlying quantum states.
Here, we realize a quantum Hall system using ultracold dysprosium atoms, in a two-dimensional geometry formed by one spatial dimension.
We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviors.
arXiv Detail & Related papers (2020-01-06T16:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.