A framework for river connectivity classification using temporal image processing and attention based neural networks
- URL: http://arxiv.org/abs/2502.00474v1
- Date: Sat, 01 Feb 2025 16:00:28 GMT
- Title: A framework for river connectivity classification using temporal image processing and attention based neural networks
- Authors: Timothy James Becker, Derin Gezgin, Jun Yi He Wu, Mary Becker,
- Abstract summary: Extreme weather events associated with climate change can result in alterations to river and stream connectivity.
Traditional stream flow gauges are costly to deploy and limited to large river bodies.
trail camera methods are a low-cost and easily deployed alternative to collect hourly data.
- Score: 0.0
- License:
- Abstract: Measuring the connectivity of water in rivers and streams is essential for effective water resource management. Increased extreme weather events associated with climate change can result in alterations to river and stream connectivity. While traditional stream flow gauges are costly to deploy and limited to large river bodies, trail camera methods are a low-cost and easily deployed alternative to collect hourly data. Image capturing, however requires stream ecologists to manually curate (select and label) tens of thousands of images per year. To improve this workflow, we developed an automated instream trail camera image classification system consisting of three parts: (1) image processing, (2) image augmentation and (3) machine learning. The image preprocessing consists of seven image quality filters, foliage-based luma variance reduction, resizing and bottom-center cropping. Images are balanced using variable amount of generative augmentation using diffusion models and then passed to a machine learning classification model in labeled form. By using the vision transformer architecture and temporal image enhancement in our framework, we are able to increase the 75% base accuracy to 90% for a new unseen site image. We make use of a dataset captured and labeled by staff from the Connecticut Department of Energy and Environmental Protection between 2018-2020. Our results indicate that a combination of temporal image processing and attention-based models are effective at classifying unseen river connectivity images.
Related papers
- Counting Fish with Temporal Representations of Sonar Video [15.713015426791221]
We propose an alternative lightweight computer vision method for fish counting based on analyzing echograms.
We achieve a count error of 23% on representative data from the Kenai River in Alaska, demonstrating the feasibility of our approach.
arXiv Detail & Related papers (2025-02-07T18:02:28Z) - AM Flow: Adapters for Temporal Processing in Action Recognition [6.67921694218089]
"textitAttention Map (AM) Flow" is a method for identifying pixels relevant to motion in each input video frame.
AM flow allows the separation spatial and temporal processing, while providing improved results over combined-temporal processing.
We present experiments on Kinetics-400, Something-Something v2, and Toyota Smarthome datasets, showcasing state-of-the-art or comparable results.
arXiv Detail & Related papers (2024-11-04T13:07:22Z) - JIGMARK: A Black-Box Approach for Enhancing Image Watermarks against Diffusion Model Edits [76.25962336540226]
JIGMARK is a first-of-its-kind watermarking technique that enhances robustness through contrastive learning.
Our evaluation reveals that JIGMARK significantly surpasses existing watermarking solutions in resilience to diffusion-model edits.
arXiv Detail & Related papers (2024-06-06T03:31:41Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments.
Previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features.
Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network's gradient space.
arXiv Detail & Related papers (2023-12-12T06:07:21Z) - Flow Matching in Latent Space [2.9330609943398525]
Flow matching is a framework to train generative models that exhibits impressive empirical performance.
We propose to apply flow matching in the latent spaces of pretrained autoencoders, which offers improved computational efficiency.
Our work stands as a pioneering contribution in the integration of various conditions into flow matching for conditional generation tasks.
arXiv Detail & Related papers (2023-07-17T17:57:56Z) - ExposureDiffusion: Learning to Expose for Low-light Image Enhancement [87.08496758469835]
This work addresses the issue by seamlessly integrating a diffusion model with a physics-based exposure model.
Our method obtains significantly improved performance and reduced inference time compared with vanilla diffusion models.
The proposed framework can work with both real-paired datasets, SOTA noise models, and different backbone networks.
arXiv Detail & Related papers (2023-07-15T04:48:35Z) - Unsupervised Restoration of Weather-affected Images using Deep Gaussian
Process-based CycleGAN [92.15895515035795]
We describe an approach for supervising deep networks that are based on CycleGAN.
We introduce new losses for training CycleGAN that lead to more effective training, resulting in high-quality reconstructions.
We demonstrate that the proposed method can be effectively applied to different restoration tasks like de-raining, de-hazing and de-snowing.
arXiv Detail & Related papers (2022-04-23T01:30:47Z) - Image analysis for automatic measurement of crustose lichens [0.0]
Lichens are frequently used as age estimators, especially in recent geological deposits and archaeological structures.
Current non-automated manual lichen and measurement is a time-consuming and laborious process.
This work presents a workflow and set of image acquisition and processing tools to efficiently identify lichen thalli in flat rocky surfaces.
arXiv Detail & Related papers (2022-03-01T23:11:59Z) - Recursive Self-Improvement for Camera Image and Signal Processing
Pipeline [6.318974730864278]
Current camera image and signal processing pipelines (ISPs) tend to apply a single filter that is uniformly applied to the entire image.
This despite the fact that most acquired camera images have spatially heterogeneous artifacts.
We present a deep reinforcement learning model that works in learned latent subspaces.
arXiv Detail & Related papers (2021-11-15T02:23:40Z) - Ensembling with Deep Generative Views [72.70801582346344]
generative models can synthesize "views" of artificial images that mimic real-world variations, such as changes in color or pose.
Here, we investigate whether such views can be applied to real images to benefit downstream analysis tasks such as image classification.
We use StyleGAN2 as the source of generative augmentations and investigate this setup on classification tasks involving facial attributes, cat faces, and cars.
arXiv Detail & Related papers (2021-04-29T17:58:35Z) - Self-Supervised Linear Motion Deblurring [112.75317069916579]
Deep convolutional neural networks are state-of-the-art for image deblurring.
We present a differentiable reblur model for self-supervised motion deblurring.
Our experiments demonstrate that self-supervised single image deblurring is really feasible.
arXiv Detail & Related papers (2020-02-10T20:15:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.