論文の概要: Variance Reduction via Resampling and Experience Replay
- arxiv url: http://arxiv.org/abs/2502.00520v1
- Date: Sat, 01 Feb 2025 18:46:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 15:04:10.017303
- Title: Variance Reduction via Resampling and Experience Replay
- Title(参考訳): リサンプリングと経験リプレイによる変動低減
- Authors: Jiale Han, Xiaowu Dai, Yuhua Zhu,
- Abstract要約: モデルが$U$-と$V$-statisticsを使ってリプレイを経験する理論的枠組みを提案する。
本稿では,LSTDアルゴリズムとPDEに基づくモデルフリーアルゴリズムを用いて,政策評価タスクに適用する。
我々は,このフレームワークをカーネルリッジレグレッションに拡張し,経験リプレイに基づく手法により従来の$O(n3)$から計算コストを削減し,分散を同時に低減することを示した。
- 参考スコア(独自算出の注目度): 6.66746639974303
- License:
- Abstract: Experience replay is a foundational technique in reinforcement learning that enhances learning stability by storing past experiences in a replay buffer and reusing them during training. Despite its practical success, its theoretical properties remain underexplored. In this paper, we present a theoretical framework that models experience replay using resampled $U$- and $V$-statistics, providing rigorous variance reduction guarantees. We apply this framework to policy evaluation tasks using the Least-Squares Temporal Difference (LSTD) algorithm and a Partial Differential Equation (PDE)-based model-free algorithm, demonstrating significant improvements in stability and efficiency, particularly in data-scarce scenarios. Beyond policy evaluation, we extend the framework to kernel ridge regression, showing that the experience replay-based method reduces the computational cost from the traditional $O(n^3)$ in time to as low as $O(n^2)$ in time while simultaneously reducing variance. Extensive numerical experiments validate our theoretical findings, demonstrating the broad applicability and effectiveness of experience replay in diverse machine learning tasks.
- Abstract(参考訳): 経験リプレイは、リプレイバッファに過去の経験を格納し、トレーニング中にそれらを再利用することにより、学習安定性を向上させる強化学習の基盤となる技術である。
その実際的な成功にもかかわらず、その理論的性質は未解明のままである。
本稿では,モデルが$U$-および$V$-Statisticsを用いてリプレイを経験し,厳密な分散低減保証を提供する理論的枠組みを提案する。
本稿では,LSTDアルゴリズムとPDEに基づくモデルフリーアルゴリズムを用いた政策評価タスクに適用し,特にデータスカースシナリオにおいて,安定性と効率の大幅な向上を示す。
政策評価以外にも,このフレームワークをカーネルリッジレグレッションに拡張し,経験リプレイに基づく手法により従来の$O(n^3)$から$O(n^2)$までの計算コストを同時に削減し,分散を減少させることを示す。
広範囲にわたる数値実験により,多種多様な機械学習タスクにおける経験再現の幅広い適用性と有効性を示した。
関連論文リスト
- Neural Active Learning Beyond Bandits [69.99592173038903]
ストリームベースとプールベースの両方のアクティブラーニングをニューラルネットワーク近似を用いて検討する。
ストリームベースおよびプールベースアクティブラーニングのためのニューラルネットワークを新たに設計したエクスプロイトと探索に基づく2つのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-04-18T21:52:14Z) - Enhancing Consistency and Mitigating Bias: A Data Replay Approach for
Incremental Learning [100.7407460674153]
ディープラーニングシステムは、一連のタスクから学ぶとき、破滅的な忘れがちだ。
問題を緩和するため、新しいタスクを学ぶ際に経験豊富なタスクのデータを再生する手法が提案されている。
しかし、メモリ制約やデータプライバシーの問題を考慮すると、実際には期待できない。
代替として、分類モデルからサンプルを反転させることにより、データフリーなデータ再生法を提案する。
論文 参考訳(メタデータ) (2024-01-12T12:51:12Z) - Actor Prioritized Experience Replay [0.0]
優先度付き体験再生(PER)では、エージェントは時間差誤差(TD)に比例した非一様確率でサンプリングされた遷移から学習することができる。
本稿では,アクター・クリティカルな手法に対する新しい経験リプレイ・サンプリング・フレームワークを紹介し,安定性の問題やPERの実証的性能の低下の背景にある最近の知見についても考察する。
我々の理論的主張を検証し、導入した手法が競合するアプローチを著しく上回ることを示した。
論文 参考訳(メタデータ) (2022-09-01T15:27:46Z) - Look Back When Surprised: Stabilizing Reverse Experience Replay for
Neural Approximation [7.6146285961466]
最近開発された理論上は厳格なリバース・エクスペリエンス・リプレイ(RER)について考察する。
実験を通して、様々なタスクにおけるPER(Preferd Experience Replay)のようなテクニックよりも優れたパフォーマンスを示す。
論文 参考訳(メタデータ) (2022-06-07T10:42:02Z) - Convergence Results For Q-Learning With Experience Replay [51.11953997546418]
コンバージェンスレート保証を行い、リプレイの頻度や回数といった重要なパラメータによってQ-ラーニングのコンバージェンスとどのように比較されるかについて議論する。
また、シンプルなMDPのクラスを導入・分析することで、これを厳格に改善する可能性を示す理論的な証拠も提示する。
論文 参考訳(メタデータ) (2021-12-08T10:22:49Z) - Variance Reduction based Experience Replay for Policy Optimization [3.0790370651488983]
Variance Reduction Experience Replay (VRER) は、政策勾配推定を改善するために、関連するサンプルを選択的に再利用するためのフレームワークである。
VRERは、VRERによるポリシーグラディエントとして知られる、効率的な非政治学習アルゴリズムの基盤となる。
論文 参考訳(メタデータ) (2021-10-17T19:28:45Z) - Taylor Expansion of Discount Factors [56.46324239692532]
実効強化学習(RL)では、値関数を推定するために使われる割引係数は、評価目的を定義するために使われる値としばしば異なる。
本研究では,この割引要因の相違が学習中に与える影響について検討し,2つの異なる割引要因の値関数を補間する目的のファミリーを発見する。
論文 参考訳(メタデータ) (2021-06-11T05:02:17Z) - Stratified Experience Replay: Correcting Multiplicity Bias in Off-Policy
Reinforcement Learning [17.3794999533024]
深部RLは異常なデータの存在に苦慮しているように見える。
近年の研究では、DQN(Deep Q-Network)の性能はリプレイメモリが大きすぎると劣化することが示された。
我々は,リプレイメモリ上で一様にサンプリングする動機を再検討し,関数近似を用いた場合の欠陥を見出した。
論文 参考訳(メタデータ) (2021-02-22T19:29:18Z) - Revisiting Fundamentals of Experience Replay [91.24213515992595]
本稿では,Q-ラーニング手法における経験リプレイの体系的および広範囲な分析について述べる。
我々は、リプレイ能力と、収集した経験に対する学習更新率の2つの基本特性に焦点を当てた。
論文 参考訳(メタデータ) (2020-07-13T21:22:17Z) - Experience Replay with Likelihood-free Importance Weights [123.52005591531194]
本研究は,現在の政策の定常分布下での経験を生かし,その可能性に基づいて,その経験を再評価することを提案する。
提案手法は,ソフトアクタ批判 (SAC) とツイン遅延Deep Deterministic Policy gradient (TD3) の2つの競合手法に実証的に適用する。
論文 参考訳(メタデータ) (2020-06-23T17:17:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。