Enhancing Field-Oriented Control of Electric Drives with Tiny Neural Network Optimized for Micro-controllers
- URL: http://arxiv.org/abs/2502.00532v1
- Date: Sat, 01 Feb 2025 19:16:51 GMT
- Title: Enhancing Field-Oriented Control of Electric Drives with Tiny Neural Network Optimized for Micro-controllers
- Authors: Martin Joel Mouk Elele, Danilo Pau, Shixin Zhuang, Tullio Facchinetti,
- Abstract summary: This paper introduces a tiny feed-forward neural network, TinyFC, integrated into the Field-Oriented Control (FOC) of Permanent Magnet Synchronous Motors (PMSMs)
A lightweight 1,400 parameters TinyFC was devised to enhance the FOC performance while fitting into the computational and memory constraints of a micro-controller.
- Score: 0.8328638943795448
- License:
- Abstract: The deployment of neural networks on resource-constrained micro-controllers has gained momentum, driving many advancements in Tiny Neural Networks. This paper introduces a tiny feed-forward neural network, TinyFC, integrated into the Field-Oriented Control (FOC) of Permanent Magnet Synchronous Motors (PMSMs). Proportional-Integral (PI) controllers are widely used in FOC for their simplicity, although their limitations in handling nonlinear dynamics hinder precision. To address this issue, a lightweight 1,400 parameters TinyFC was devised to enhance the FOC performance while fitting into the computational and memory constraints of a micro-controller. Advanced optimization techniques, including pruning, hyperparameter tuning, and quantization to 8-bit integers, were applied to reduce the model's footprint while preserving the network effectiveness. Simulation results show the proposed approach significantly reduced overshoot by up to 87.5%, with the pruned model achieving complete overshoot elimination, highlighting the potential of tiny neural networks in real-time motor control applications.
Related papers
- Energy-Aware FPGA Implementation of Spiking Neural Network with LIF Neurons [0.5243460995467893]
Spiking Neural Networks (SNNs) stand out as a cutting-edge solution for TinyML.
This paper presents a novel SNN architecture based on the 1st Order Leaky Integrate-and-Fire (LIF) neuron model.
A hardware-friendly LIF design is also proposed, and implemented on a Xilinx Artix-7 FPGA.
arXiv Detail & Related papers (2024-11-03T16:42:10Z) - DSORT-MCU: Detecting Small Objects in Real-Time on Microcontroller Units [1.4447019135112429]
This paper proposes an adaptive tiling method for lightweight and energy-efficient object detection networks, including YOLO-based models and the popular FOMO network.
The proposed tiling enables object detection on low-power MCUs with no compromise on accuracy compared to large-scale detection models.
arXiv Detail & Related papers (2024-10-22T07:37:47Z) - Real-Time Stress Detection via Photoplethysmogram Signals: Implementation of a Combined Continuous Wavelet Transform and Convolutional Neural Network on Resource-Constrained Microcontrollers [0.20971479389679332]
This paper introduces a robust stress detection system utilizing a Convolutional Neural Network (CNN) designed for the analysis of Photoplethysmogram (SAD) signals.
We applied Continuous Wavelet Transform (CWT) to extract informative features from wrist PPG signals, demonstrating enhanced stress detection and learning.
arXiv Detail & Related papers (2024-10-14T06:43:51Z) - Full-Stack Optimization for CAM-Only DNN Inference [2.0837295518447934]
This paper explores the combination of algorithmic optimizations for ternary weight neural networks and associative processors.
We propose a novel compilation flow to optimize convolutions on APs by reducing their arithmetic intensity.
Our solution improves the energy efficiency of ResNet-18 inference on ImageNet by 7.5x compared to crossbar in-memory accelerators.
arXiv Detail & Related papers (2024-01-23T10:27:38Z) - Enhancing Lightweight Neural Networks for Small Object Detection in IoT
Applications [1.6932009464531739]
The paper proposes a novel adaptive tiling method that can be used on top of any existing object detector.
Our experimental results show that the proposed tiling method can boost the F1-score by up to 225% while reducing the average object count error by up to 76%.
arXiv Detail & Related papers (2023-11-13T08:58:34Z) - EPIM: Efficient Processing-In-Memory Accelerators based on Epitome [78.79382890789607]
We introduce the Epitome, a lightweight neural operator offering convolution-like functionality.
On the software side, we evaluate epitomes' latency and energy on PIM accelerators.
We introduce a PIM-aware layer-wise design method to enhance their hardware efficiency.
arXiv Detail & Related papers (2023-11-12T17:56:39Z) - NeuralFuse: Learning to Recover the Accuracy of Access-Limited Neural Network Inference in Low-Voltage Regimes [50.00272243518593]
Deep neural networks (DNNs) have become ubiquitous in machine learning, but their energy consumption remains problematically high.
We have developed NeuralFuse, a novel add-on module that handles the energy-accuracy tradeoff in low-voltage regimes.
At a 1% bit-error rate, NeuralFuse can reduce access energy by up to 24% while recovering accuracy by up to 57%.
arXiv Detail & Related papers (2023-06-29T11:38:22Z) - Real-time Neural-MPC: Deep Learning Model Predictive Control for
Quadrotors and Agile Robotic Platforms [59.03426963238452]
We present Real-time Neural MPC, a framework to efficiently integrate large, complex neural network architectures as dynamics models within a model-predictive control pipeline.
We show the feasibility of our framework on real-world problems by reducing the positional tracking error by up to 82% when compared to state-of-the-art MPC approaches without neural network dynamics.
arXiv Detail & Related papers (2022-03-15T09:38:15Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
This work presents the development of a hardware accelerator for an SNN, with off-line training, applied to an image recognition task.
The design targets a Xilinx Artix-7 FPGA, using in total around the 40% of the available hardware resources.
It reduces the classification time by three orders of magnitude, with a small 4.5% impact on the accuracy, if compared to its software, full precision counterpart.
arXiv Detail & Related papers (2022-01-18T13:59:22Z) - Efficient Micro-Structured Weight Unification and Pruning for Neural
Network Compression [56.83861738731913]
Deep Neural Network (DNN) models are essential for practical applications, especially for resource limited devices.
Previous unstructured or structured weight pruning methods can hardly truly accelerate inference.
We propose a generalized weight unification framework at a hardware compatible micro-structured level to achieve high amount of compression and acceleration.
arXiv Detail & Related papers (2021-06-15T17:22:59Z) - MicroNet: Towards Image Recognition with Extremely Low FLOPs [117.96848315180407]
MicroNet is an efficient convolutional neural network using extremely low computational cost.
A family of MicroNets achieve a significant performance gain over the state-of-the-art in the low FLOP regime.
For instance, MicroNet-M1 achieves 61.1% top-1 accuracy on ImageNet classification with 12 MFLOPs, outperforming MobileNetV3 by 11.3%.
arXiv Detail & Related papers (2020-11-24T18:59:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.