Integrating Frequency Guidance into Multi-source Domain Generalization for Bearing Fault Diagnosis
- URL: http://arxiv.org/abs/2502.00545v1
- Date: Sat, 01 Feb 2025 20:23:03 GMT
- Title: Integrating Frequency Guidance into Multi-source Domain Generalization for Bearing Fault Diagnosis
- Authors: Xiaotong Tu, Chenyu Ma, Qingyao Wu, Yinhao Liu, Hongyang Zhang,
- Abstract summary: We propose the Fourier-based Augmentation Reconstruction Network, namely FARNet.
The network comprises an amplitude spectrum sub-network and a phase spectrum sub-network, sequentially reducing the discrepancy between the source and target domains.
To refine the decision boundary of our model output compared to conventional triplet loss, we propose a manifold triplet loss to contribute to generalization.
- Score: 24.85752780864944
- License:
- Abstract: Recent generalizable fault diagnosis researches have effectively tackled the distributional shift between unseen working conditions. Most of them mainly focus on learning domain-invariant representation through feature-level methods. However, the increasing numbers of unseen domains may lead to domain-invariant features contain instance-level spurious correlations, which impact the previous models' generalizable ability. To address the limitations, we propose the Fourier-based Augmentation Reconstruction Network, namely FARNet.The methods are motivated by the observation that the Fourier phase component and amplitude component preserve different semantic information of the signals, which can be employed in domain augmentation techniques. The network comprises an amplitude spectrum sub-network and a phase spectrum sub-network, sequentially reducing the discrepancy between the source and target domains. To construct a more robust generalized model, we employ a multi-source domain data augmentation strategy in the frequency domain. Specifically, a Frequency-Spatial Interaction Module (FSIM) is introduced to handle global information and local spatial features, promoting representation learning between the two sub-networks. To refine the decision boundary of our model output compared to conventional triplet loss, we propose a manifold triplet loss to contribute to generalization. Through extensive experiments on the CWRU and SJTU datasets, FARNet demonstrates effective performance and achieves superior results compared to current cross-domain approaches on the benchmarks.
Related papers
- Multisource Collaborative Domain Generalization for Cross-Scene Remote Sensing Image Classification [57.945437355714155]
Cross-scene image classification aims to transfer prior knowledge of ground materials to annotate regions with different distributions.
Existing approaches focus on single-source domain generalization to unseen target domains.
We propose a novel multi-source collaborative domain generalization framework (MS-CDG) based on homogeneity and heterogeneity characteristics of multi-source remote sensing data.
arXiv Detail & Related papers (2024-12-05T06:15:08Z) - FIESTA: Fourier-Based Semantic Augmentation with Uncertainty Guidance for Enhanced Domain Generalizability in Medical Image Segmentation [10.351755243183383]
Single-source domain generalization (SDG) in medical image segmentation (MIS) aims to generalize a model using data from only one source domain to segment data from an unseen target domain.
Existing methods often fail to fully consider the details and uncertain areas prevalent in MIS, leading to mis-segmentation.
This paper proposes a Fourier-based semantic augmentation method called FIESTA using uncertainty guidance to enhance the fundamental goals of MIS.
arXiv Detail & Related papers (2024-06-20T13:37:29Z) - A Novel Cross-Perturbation for Single Domain Generalization [54.612933105967606]
Single domain generalization aims to enhance the ability of the model to generalize to unknown domains when trained on a single source domain.
The limited diversity in the training data hampers the learning of domain-invariant features, resulting in compromised generalization performance.
We propose CPerb, a simple yet effective cross-perturbation method to enhance the diversity of the training data.
arXiv Detail & Related papers (2023-08-02T03:16:12Z) - Cross Contrasting Feature Perturbation for Domain Generalization [11.863319505696184]
Domain generalization aims to learn a robust model from source domains that generalize well on unseen target domains.
Recent studies focus on generating novel domain samples or features to diversify distributions complementary to source domains.
We propose an online one-stage Cross Contrasting Feature Perturbation framework to simulate domain shift.
arXiv Detail & Related papers (2023-07-24T03:27:41Z) - FAN-Net: Fourier-Based Adaptive Normalization For Cross-Domain Stroke
Lesion Segmentation [17.150527504559594]
We propose a novel FAN-Net, a U-Net-based segmentation network incorporated with a Fourier-based adaptive normalization (FAN)
The experimental results on the ATLAS dataset, which consists of MR images from 9 sites, show the superior performance of the proposed FAN-Net compared with baseline methods.
arXiv Detail & Related papers (2023-04-23T06:58:21Z) - Deep Frequency Filtering for Domain Generalization [55.66498461438285]
Deep Neural Networks (DNNs) have preferences for some frequency components in the learning process.
We propose Deep Frequency Filtering (DFF) for learning domain-generalizable features.
We show that applying our proposed DFF on a plain baseline outperforms the state-of-the-art methods on different domain generalization tasks.
arXiv Detail & Related papers (2022-03-23T05:19:06Z) - Consistency and Diversity induced Human Motion Segmentation [231.36289425663702]
We propose a novel Consistency and Diversity induced human Motion (CDMS) algorithm.
Our model factorizes the source and target data into distinct multi-layer feature spaces.
A multi-mutual learning strategy is carried out to reduce the domain gap between the source and target data.
arXiv Detail & Related papers (2022-02-10T06:23:56Z) - Domain Generalization via Frequency-based Feature Disentanglement and
Interaction [23.61154228837516]
Domain generalization aims at mining domain-irrelevant knowledge from multiple source domains.
We introduce (i) an encoder-decoder structure for high-frequency and low-frequency feature disentangling, (ii) an information interaction mechanism that ensures helpful knowledge from both parts can cooperate effectively.
The proposed method obtains state-of-the-art results on three widely used domain generalization benchmarks.
arXiv Detail & Related papers (2022-01-20T07:42:12Z) - A Fourier-based Framework for Domain Generalization [82.54650565298418]
Domain generalization aims at tackling this problem by learning transferable knowledge from multiple source domains in order to generalize to unseen target domains.
This paper introduces a novel Fourier-based perspective for domain generalization.
Experiments on three benchmarks have demonstrated that the proposed method is able to achieve state-of-the-arts performance for domain generalization.
arXiv Detail & Related papers (2021-05-24T06:50:30Z) - Domain Conditioned Adaptation Network [90.63261870610211]
We propose a Domain Conditioned Adaptation Network (DCAN) to excite distinct convolutional channels with a domain conditioned channel attention mechanism.
This is the first work to explore the domain-wise convolutional channel activation for deep DA networks.
arXiv Detail & Related papers (2020-05-14T04:23:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.