Enhancing Offline Reinforcement Learning with Curriculum Learning-Based Trajectory Valuation
- URL: http://arxiv.org/abs/2502.00601v1
- Date: Sun, 02 Feb 2025 00:03:53 GMT
- Title: Enhancing Offline Reinforcement Learning with Curriculum Learning-Based Trajectory Valuation
- Authors: Amir Abolfazli, Zekun Song, Avishek Anand, Wolfgang Nejdl,
- Abstract summary: Deep reinforcement learning (DRL) relies on the availability and quality of training data, often requiring extensive interactions with specific environments.
In many real-world scenarios, where data collection is costly and risky, offline reinforcement learning (RL) offers a solution by utilizing data collected by domain experts and searching for a batch-constrained optimal policy.
Existing offline RL methods often struggle with challenges posed by non-matching data from external sources.
- Score: 6.4653739435880455
- License:
- Abstract: The success of deep reinforcement learning (DRL) relies on the availability and quality of training data, often requiring extensive interactions with specific environments. In many real-world scenarios, where data collection is costly and risky, offline reinforcement learning (RL) offers a solution by utilizing data collected by domain experts and searching for a batch-constrained optimal policy. This approach is further augmented by incorporating external data sources, expanding the range and diversity of data collection possibilities. However, existing offline RL methods often struggle with challenges posed by non-matching data from these external sources. In this work, we specifically address the problem of source-target domain mismatch in scenarios involving mixed datasets, characterized by a predominance of source data generated from random or suboptimal policies and a limited amount of target data generated from higher-quality policies. To tackle this problem, we introduce Transition Scoring (TS), a novel method that assigns scores to transitions based on their similarity to the target domain, and propose Curriculum Learning-Based Trajectory Valuation (CLTV), which effectively leverages these transition scores to identify and prioritize high-quality trajectories through a curriculum learning approach. Our extensive experiments across various offline RL methods and MuJoCo environments, complemented by rigorous theoretical analysis, demonstrate that CLTV enhances the overall performance and transferability of policies learned by offline RL algorithms.
Related papers
- Sparsity-based Safety Conservatism for Constrained Offline Reinforcement Learning [4.0847743592744905]
Reinforcement Learning (RL) has made notable success in decision-making fields like autonomous driving and robotic manipulation.
RL's training approach, centered on "on-policy" sampling, doesn't fully capitalize on data.
offline RL has emerged as a compelling alternative, particularly in conducting additional experiments is impractical.
arXiv Detail & Related papers (2024-07-17T20:57:05Z) - Out-of-Distribution Adaptation in Offline RL: Counterfactual Reasoning via Causal Normalizing Flows [30.926243761581624]
Causal Normalizing Flow (CNF) is developed to learn the transition and reward functions for data generation and augmentation in offline policy evaluation and training.
CNF gains predictive and counterfactual reasoning capabilities for sequential decision-making tasks, revealing a high potential for OOD adaptation.
Our CNF-based offline RL approach is validated through empirical evaluations, outperforming model-free and model-based methods by a significant margin.
arXiv Detail & Related papers (2024-05-06T22:44:32Z) - Pessimistic Value Iteration for Multi-Task Data Sharing in Offline Reinforcement Learning [116.87367592920171]
Offline Reinforcement Learning (RL) has shown promising results in learning a task-specific policy from a fixed dataset.
In scenarios where the dataset for a specific task is limited, a natural approach is to improve offline RL with datasets from other tasks.
We propose an uncertainty-based Multi-Task Data Sharing (MTDS) approach that shares the entire dataset without data selection.
arXiv Detail & Related papers (2024-04-30T08:16:52Z) - Beyond Uniform Sampling: Offline Reinforcement Learning with Imbalanced
Datasets [53.8218145723718]
offline policy learning is aimed at learning decision-making policies using existing datasets of trajectories without collecting additional data.
We argue that when a dataset is dominated by suboptimal trajectories, state-of-the-art offline RL algorithms do not substantially improve over the average return of trajectories in the dataset.
We present a realization of the sampling strategy and an algorithm that can be used as a plug-and-play module in standard offline RL algorithms.
arXiv Detail & Related papers (2023-10-06T17:58:14Z) - Offline Reinforcement Learning with Instrumental Variables in Confounded
Markov Decision Processes [93.61202366677526]
We study the offline reinforcement learning (RL) in the face of unmeasured confounders.
We propose various policy learning methods with the finite-sample suboptimality guarantee of finding the optimal in-class policy.
arXiv Detail & Related papers (2022-09-18T22:03:55Z) - Data Valuation for Offline Reinforcement Learning [1.3535770763481902]
The field of offline reinforcement learning addresses issues through outsourcing the collection of data to a domain expert or a carefully monitored program.
With the emergence of data markets, an alternative to constructing a dataset in-house is to purchase external data.
This raises questions regarding the transferability and robustness of an offline reinforcement learning agent trained on externally acquired data.
arXiv Detail & Related papers (2022-05-19T13:21:40Z) - Latent-Variable Advantage-Weighted Policy Optimization for Offline RL [70.01851346635637]
offline reinforcement learning methods hold the promise of learning policies from pre-collected datasets without the need to query the environment for new transitions.
In practice, offline datasets are often heterogeneous, i.e., collected in a variety of scenarios.
We propose to leverage latent-variable policies that can represent a broader class of policy distributions.
Our method improves the average performance of the next best-performing offline reinforcement learning methods by 49% on heterogeneous datasets.
arXiv Detail & Related papers (2022-03-16T21:17:03Z) - The Challenges of Exploration for Offline Reinforcement Learning [8.484491887821473]
We study the two processes of reinforcement learning: collecting informative experience and inferring optimal behaviour.
The task-agnostic setting for data collection, where the task is not known a priori, is of particular interest.
We use this decoupled framework to strengthen intuitions about exploration and the data prerequisites for effective offline RL.
arXiv Detail & Related papers (2022-01-27T23:59:56Z) - Critic Regularized Regression [70.8487887738354]
We propose a novel offline RL algorithm to learn policies from data using a form of critic-regularized regression (CRR)
We find that CRR performs surprisingly well and scales to tasks with high-dimensional state and action spaces.
arXiv Detail & Related papers (2020-06-26T17:50:26Z) - D4RL: Datasets for Deep Data-Driven Reinforcement Learning [119.49182500071288]
We introduce benchmarks specifically designed for the offline setting, guided by key properties of datasets relevant to real-world applications of offline RL.
By moving beyond simple benchmark tasks and data collected by partially-trained RL agents, we reveal important and unappreciated deficiencies of existing algorithms.
arXiv Detail & Related papers (2020-04-15T17:18:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.