Sparsity-based Safety Conservatism for Constrained Offline Reinforcement Learning
- URL: http://arxiv.org/abs/2407.13006v1
- Date: Wed, 17 Jul 2024 20:57:05 GMT
- Title: Sparsity-based Safety Conservatism for Constrained Offline Reinforcement Learning
- Authors: Minjae Cho, Chuangchuang Sun,
- Abstract summary: Reinforcement Learning (RL) has made notable success in decision-making fields like autonomous driving and robotic manipulation.
RL's training approach, centered on "on-policy" sampling, doesn't fully capitalize on data.
offline RL has emerged as a compelling alternative, particularly in conducting additional experiments is impractical.
- Score: 4.0847743592744905
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement Learning (RL) has made notable success in decision-making fields like autonomous driving and robotic manipulation. Yet, its reliance on real-time feedback poses challenges in costly or hazardous settings. Furthermore, RL's training approach, centered on "on-policy" sampling, doesn't fully capitalize on data. Hence, Offline RL has emerged as a compelling alternative, particularly in conducting additional experiments is impractical, and abundant datasets are available. However, the challenge of distributional shift (extrapolation), indicating the disparity between data distributions and learning policies, also poses a risk in offline RL, potentially leading to significant safety breaches due to estimation errors (interpolation). This concern is particularly pronounced in safety-critical domains, where real-world problems are prevalent. To address both extrapolation and interpolation errors, numerous studies have introduced additional constraints to confine policy behavior, steering it towards more cautious decision-making. While many studies have addressed extrapolation errors, fewer have focused on providing effective solutions for tackling interpolation errors. For example, some works tackle this issue by incorporating potential cost-maximizing optimization by perturbing the original dataset. However, this, involving a bi-level optimization structure, may introduce significant instability or complicate problem-solving in high-dimensional tasks. This motivates us to pinpoint areas where hazards may be more prevalent than initially estimated based on the sparsity of available data by providing significant insight into constrained offline RL. In this paper, we present conservative metrics based on data sparsity that demonstrate the high generalizability to any methods and efficacy compared to using bi-level cost-ub-maximization.
Related papers
- An Investigation of Offline Reinforcement Learning in Factorisable Action Spaces [5.874782446136915]
Pivotal to the success of transferring RL offline is mitigating overestimation bias in value estimates for state-action pairs absent from data.
Factorised discrete action spaces have received relatively little attention, despite many real-world problems naturally having factorisable actions.
We present the case for a factorised approach and conduct an extensive empirical evaluation of several offline techniques adapted to the factorised setting.
arXiv Detail & Related papers (2024-11-17T14:31:14Z) - Out-of-Distribution Adaptation in Offline RL: Counterfactual Reasoning via Causal Normalizing Flows [30.926243761581624]
Causal Normalizing Flow (CNF) is developed to learn the transition and reward functions for data generation and augmentation in offline policy evaluation and training.
CNF gains predictive and counterfactual reasoning capabilities for sequential decision-making tasks, revealing a high potential for OOD adaptation.
Our CNF-based offline RL approach is validated through empirical evaluations, outperforming model-free and model-based methods by a significant margin.
arXiv Detail & Related papers (2024-05-06T22:44:32Z) - Leveraging Factored Action Spaces for Efficient Offline Reinforcement
Learning in Healthcare [38.42691031505782]
We propose a form of linear Q-function decomposition induced by factored action spaces.
Our approach can help an agent make more accurate inferences within underexplored regions of the state-action space.
arXiv Detail & Related papers (2023-05-02T19:13:10Z) - Robust Offline Reinforcement Learning with Gradient Penalty and
Constraint Relaxation [38.95482624075353]
We introduce gradient penalty over the learned value function to tackle the exploding Q-functions.
We then relax the closeness constraints towards non-optimal actions with critic weighted constraint relaxation.
Experimental results show that the proposed techniques effectively tame the non-optimal trajectories for policy constraint offline RL methods.
arXiv Detail & Related papers (2022-10-19T11:22:36Z) - COptiDICE: Offline Constrained Reinforcement Learning via Stationary
Distribution Correction Estimation [73.17078343706909]
offline constrained reinforcement learning (RL) problem, in which the agent aims to compute a policy that maximizes expected return while satisfying given cost constraints, learning only from a pre-collected dataset.
We present an offline constrained RL algorithm that optimize the policy in the space of the stationary distribution.
Our algorithm, COptiDICE, directly estimates the stationary distribution corrections of the optimal policy with respect to returns, while constraining the cost upper bound, with the goal of yielding a cost-conservative policy for actual constraint satisfaction.
arXiv Detail & Related papers (2022-04-19T15:55:47Z) - Latent-Variable Advantage-Weighted Policy Optimization for Offline RL [70.01851346635637]
offline reinforcement learning methods hold the promise of learning policies from pre-collected datasets without the need to query the environment for new transitions.
In practice, offline datasets are often heterogeneous, i.e., collected in a variety of scenarios.
We propose to leverage latent-variable policies that can represent a broader class of policy distributions.
Our method improves the average performance of the next best-performing offline reinforcement learning methods by 49% on heterogeneous datasets.
arXiv Detail & Related papers (2022-03-16T21:17:03Z) - Offline Reinforcement Learning: Fundamental Barriers for Value Function
Approximation [74.3002974673248]
We consider the offline reinforcement learning problem, where the aim is to learn a decision making policy from logged data.
offline RL is becoming increasingly relevant in practice, because online data collection is well suited to safety-critical domains.
Our results show that sample-efficient offline reinforcement learning requires either restrictive coverage conditions or representation conditions that go beyond complexity learning.
arXiv Detail & Related papers (2021-11-21T23:22:37Z) - Constraints Penalized Q-Learning for Safe Offline Reinforcement Learning [15.841609263723575]
We study the problem of safe offline reinforcement learning (RL)
The goal is to learn a policy that maximizes long-term reward while satisfying safety constraints given only offline data, without further interaction with the environment.
We show that na"ive approaches that combine techniques from safe RL and offline RL can only learn sub-optimal solutions.
arXiv Detail & Related papers (2021-07-19T16:30:14Z) - Continuous Doubly Constrained Batch Reinforcement Learning [93.23842221189658]
We propose an algorithm for batch RL, where effective policies are learned using only a fixed offline dataset instead of online interactions with the environment.
The limited data in batch RL produces inherent uncertainty in value estimates of states/actions that were insufficiently represented in the training data.
We propose to mitigate this issue via two straightforward penalties: a policy-constraint to reduce this divergence and a value-constraint that discourages overly optimistic estimates.
arXiv Detail & Related papers (2021-02-18T08:54:14Z) - Critic Regularized Regression [70.8487887738354]
We propose a novel offline RL algorithm to learn policies from data using a form of critic-regularized regression (CRR)
We find that CRR performs surprisingly well and scales to tasks with high-dimensional state and action spaces.
arXiv Detail & Related papers (2020-06-26T17:50:26Z) - Provably Efficient Causal Reinforcement Learning with Confounded
Observational Data [135.64775986546505]
We study how to incorporate the dataset (observational data) collected offline, which is often abundantly available in practice, to improve the sample efficiency in the online setting.
We propose the deconfounded optimistic value iteration (DOVI) algorithm, which incorporates the confounded observational data in a provably efficient manner.
arXiv Detail & Related papers (2020-06-22T14:49:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.