論文の概要: Avoiding $\mathbf{exp(R_{max})}$ scaling in RLHF through Preference-based Exploration
- arxiv url: http://arxiv.org/abs/2502.00666v1
- Date: Sun, 02 Feb 2025 04:40:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 15:06:03.631220
- Title: Avoiding $\mathbf{exp(R_{max})}$ scaling in RLHF through Preference-based Exploration
- Title(参考訳): RLHFにおける$\mathbf{exp(R_{max})}$のスケーリングを回避する
- Authors: Mingyu Chen, Yiding Chen, Wen Sun, Xuezhou Zhang,
- Abstract要約: RLHF(Reinforcement Learning from Human Feedback)は,大規模言語モデル(LLM)アライメントのための重要な手法として登場した。
本稿では、オンラインRLHFの設定と、サンプル効率の向上に焦点をあてる。
- 参考スコア(独自算出の注目度): 20.76451379043945
- License:
- Abstract: Reinforcement Learning from Human Feedback (RLHF) has emerged as a pivotal technique for large language model (LLM) alignment. This paper studies the setting of online RLHF and focus on improving sample efficiency. All existing algorithms in online RLHF, whether doing passive exploration or active exploration, suffer from a sample complexity that scales exponentially with the scale of the reward function. This fundamental limitation hinders their effectiveness in scenarios with heavily skewed preferences, e.g. questions with a unique correct solution. To address this, we introduce Self-Exploring Preference-Incentive Online Preference Optimization (SE-POPO), an online RLHF algorithm that for the first time achieves a sample complexity that scales polynomially with the reward scale, answering an open problem raised by Xie et al. (2024).. Theoretically, we demonstrate that the sample complexity of SE-POPO dominates that of existing exploration algorithms. Empirically, our systematic evaluation confirms that SE-POPO is more sample-efficient than both exploratory and non-exploratory baselines, in two primary application scenarios of RLHF as well as on public benchmarks, marking a significant step forward in RLHF algorithm design.
- Abstract(参考訳): RLHF(Reinforcement Learning from Human Feedback)は,大規模言語モデル(LLM)アライメントのための重要な手法として登場した。
本稿では、オンラインRLHFの設定と、サンプル効率の向上に焦点をあてる。
オンラインRLHFの既存のアルゴリズムは、受動的探索でもアクティブ探索でも、報酬関数のスケールと指数関数的にスケールするサンプルの複雑さに悩まされている。
この基本的な制限は、非常に歪んだ好みを持つシナリオ、例えばユニークな正しい解を持つ質問において、それらの効果を妨げる。
この問題を解決するために、オンラインRLHFアルゴリズムであるSelf-Exploring Preference-Incentive Online Preference Optimization (SE-POPO)を導入する。
と。
理論的には、SE-POPOのサンプルの複雑さが既存の探索アルゴリズムの複雑さを支配していることが示される。
実証的な評価により,SE-POPOはRLHFと公開ベンチマークの2つの主要な応用シナリオにおいて,探索的ベースラインと非探索的ベースラインの両方よりもサンプリング効率が高いことが確認された。
関連論文リスト
- Provably Efficient RLHF Pipeline: A Unified View from Contextual Bandits [59.30310692855397]
本稿では,RLHFパイプラインをコンテキスト的帯域幅の観点から統一したフレームワークを提案する。
RLHFプロセスは、(ポスト-)トレーニングとデプロイメントの2つのステージに分解します。
次に,各ステージごとに新しいアルゴリズムを開発し,統計的および計算効率の両面で有意な改善を示す。
論文 参考訳(メタデータ) (2025-02-11T02:36:01Z) - Online Preference Alignment for Language Models via Count-based Exploration [46.46627519343809]
Reinforcement Learning from Human Feedback (RLHF)は、人間の好みに合わせて微調整された大規模言語モデル(LLM)に大きな可能性を示している。
既存のメソッドは、データカバレッジに制限のある、固定データセットからの好みのアライメントを実行する。
オンラインRLHFは、プロンプト-レスポンスペアを反復的に収集することで、LLMが初期データセットのサポートの外部を探索できるようにするのが望ましい。
論文 参考訳(メタデータ) (2025-01-22T09:12:09Z) - ARLBench: Flexible and Efficient Benchmarking for Hyperparameter Optimization in Reinforcement Learning [42.33815055388433]
ARLBenchは強化学習(RL)におけるハイパーパラメータ最適化(HPO)のベンチマークである
様々なHPOアプローチの比較が可能であり、高い効率で評価できる。
ARLBenchはAutoRLの研究のための効率的で柔軟性があり、未来志向の基盤である。
論文 参考訳(メタデータ) (2024-09-27T15:22:28Z) - Exploratory Preference Optimization: Harnessing Implicit Q*-Approximation for Sample-Efficient RLHF [82.7679132059169]
人間のフィードバックから強化学習が言語モデルのアライメントのための中心的なツールとして登場した。
我々は、RLHFにおけるオンライン探索のための新しいアルゴリズム、Exploratory Preference Optimization (XPO)を提案する。
XPOは証明可能な最強の保証と有望な経験的パフォーマンスを享受しています。
論文 参考訳(メタデータ) (2024-05-31T17:39:06Z) - On Sample-Efficient Offline Reinforcement Learning: Data Diversity,
Posterior Sampling, and Beyond [29.449446595110643]
本稿では、オフラインRLにおけるカバレッジ対策の以前の概念を仮定したデータ多様性の概念を提案する。
オフラインRLのためのモデルなしPSベースのアルゴリズムは、自然界において頻繁(即ち最悪の場合)な準最適境界を持つ新しいアルゴリズムである。
論文 参考訳(メタデータ) (2024-01-06T20:52:04Z) - Iterative Preference Learning from Human Feedback: Bridging Theory and Practice for RLHF under KL-Constraint [56.74058752955209]
本稿では,RLHFによる強化学習を用いた生成モデルのアライメント過程について検討する。
まず、オフラインPPOやオフラインDPOのような既存の一般的な手法の主な課題を、環境の戦略的探索に欠如していると認識する。
有限サンプル理論保証を用いた効率的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-12-18T18:58:42Z) - Maximize to Explore: One Objective Function Fusing Estimation, Planning,
and Exploration [87.53543137162488]
我々はtextttMEX というオンライン強化学習(オンラインRL)フレームワークを提案する。
textttMEXは、自動的に探索エクスプロイトのバランスをとりながら、見積もりと計画コンポーネントを統合する。
様々な MuJoCo 環境では,ベースラインを安定的なマージンで上回り,十分な報酬を得られる。
論文 参考訳(メタデータ) (2023-05-29T17:25:26Z) - Two-step hyperparameter optimization method: Accelerating hyperparameter
search by using a fraction of a training dataset [0.15420205433587747]
計算要求と待ち時間を抑制するための戦略的ソリューションとして,2段階のHPO法を提案する。
我々は最近の2段階HPO法のエアロゾル活性化のためのニューラルネットワークエミュレータ開発への応用について述べる。
論文 参考訳(メタデータ) (2023-02-08T02:38:26Z) - Reward-Free RL is No Harder Than Reward-Aware RL in Linear Markov
Decision Processes [61.11090361892306]
Reward-free reinforcement learning (RL) は、エージェントが探索中に報酬関数にアクセスできないような環境を考える。
この分離は線形MDPの設定には存在しないことを示す。
我々は$d$次元線形 MDP における報酬のない RL に対する計算効率の良いアルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-01-26T22:09:59Z) - On Reward-Free RL with Kernel and Neural Function Approximations:
Single-Agent MDP and Markov Game [140.19656665344917]
エージェントが事前に特定された報酬関数を使わずに環境を徹底的に探索することを目的とした報酬のないRL問題について検討する。
関数近似の文脈でこの問題に取り組み、強力な関数近似器を活用する。
我々は、カーネルとニューラルファンクション近似器を用いた、証明可能な効率の良い報酬なしRLアルゴリズムを確立した。
論文 参考訳(メタデータ) (2021-10-19T07:26:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。