CycleGuardian: A Framework for Automatic RespiratorySound classification Based on Improved Deep clustering and Contrastive Learning
- URL: http://arxiv.org/abs/2502.00734v1
- Date: Sun, 02 Feb 2025 09:56:47 GMT
- Title: CycleGuardian: A Framework for Automatic RespiratorySound classification Based on Improved Deep clustering and Contrastive Learning
- Authors: Yun Chu, Qiuhao Wang, Enze Zhou, Ling Fu, Qian Liu, Gang Zheng,
- Abstract summary: Auscultation plays a pivotal role in early respiratory and pulmonary disease diagnosis.
Existing state-of-the-art models suffer from excessive parameter size, impeding deployment on resource-constrained mobile platforms.
We propose a framework based on an improved deep clustering and contrastive learning.
We deploy the network on Android devices, showcasing a comprehensive intelligent respiratory sound auscultation system.
- Score: 9.215130010602634
- License:
- Abstract: Auscultation plays a pivotal role in early respiratory and pulmonary disease diagnosis. Despite the emergence of deep learning-based methods for automatic respiratory sound classification post-Covid-19, limited datasets impede performance enhancement. Distinguishing between normal and abnormal respiratory sounds poses challenges due to the coexistence of normal respiratory components and noise components in both types. Moreover, different abnormal respiratory sounds exhibit similar anomalous features, hindering their differentiation. Besides, existing state-of-the-art models suffer from excessive parameter size, impeding deployment on resource-constrained mobile platforms. To address these issues, we design a lightweight network CycleGuardian and propose a framework based on an improved deep clustering and contrastive learning. We first generate a hybrid spectrogram for feature diversity and grouping spectrograms to facilitating intermittent abnormal sound capture.Then, CycleGuardian integrates a deep clustering module with a similarity-constrained clustering component to improve the ability to capture abnormal features and a contrastive learning module with group mixing for enhanced abnormal feature discernment. Multi-objective optimization enhances overall performance during training. In experiments we use the ICBHI2017 dataset, following the official split method and without any pre-trained weights, our method achieves Sp: 82.06 $\%$, Se: 44.47$\%$, and Score: 63.26$\%$ with a network model size of 38M, comparing to the current model, our method leads by nearly 7$\%$, achieving the current best performances. Additionally, we deploy the network on Android devices, showcasing a comprehensive intelligent respiratory sound auscultation system.
Related papers
- Lungmix: A Mixup-Based Strategy for Generalization in Respiratory Sound Classification [3.879898053132466]
Lungmix is a novel data augmentation technique inspired by Mixup.
It generates augmented data by blending waveforms using loudness and random masks while interpolating labels based on their semantic meaning.
It boosts the 4-class classification score by up to 3.55%, achieving performance comparable to models trained directly on the target dataset.
arXiv Detail & Related papers (2024-12-29T12:44:13Z) - Adversarial Fine-tuning using Generated Respiratory Sound to Address
Class Imbalance [1.3686993145787067]
We propose a straightforward approach to augment imbalanced respiratory sound data using an audio diffusion model as a conditional neural vocoder.
We also demonstrate a simple yet effective adversarial fine-tuning method to align features between the synthetic and real respiratory sound samples to improve respiratory sound classification performance.
arXiv Detail & Related papers (2023-11-11T05:02:54Z) - Knowledge Diffusion for Distillation [53.908314960324915]
The representation gap between teacher and student is an emerging topic in knowledge distillation (KD)
We state that the essence of these methods is to discard the noisy information and distill the valuable information in the feature.
We propose a novel KD method dubbed DiffKD, to explicitly denoise and match features using diffusion models.
arXiv Detail & Related papers (2023-05-25T04:49:34Z) - Fuzzy Attention Neural Network to Tackle Discontinuity in Airway
Segmentation [67.19443246236048]
Airway segmentation is crucial for the examination, diagnosis, and prognosis of lung diseases.
Some small-sized airway branches (e.g., bronchus and terminaloles) significantly aggravate the difficulty of automatic segmentation.
This paper presents an efficient method for airway segmentation, comprising a novel fuzzy attention neural network and a comprehensive loss function.
arXiv Detail & Related papers (2022-09-05T16:38:13Z) - Exploring Self-Supervised Representation Ensembles for COVID-19 Cough
Classification [5.469841541565308]
We propose a novel self-supervised learning enabled framework for COVID-19 cough classification.
A contrastive pre-training phase is introduced to train a Transformer-based feature encoder with unlabelled data.
We show that the proposed contrastive pre-training, the random masking mechanism, and the ensemble architecture contribute to improving cough classification performance.
arXiv Detail & Related papers (2021-05-17T01:27:20Z) - Detecting COVID-19 from Breathing and Coughing Sounds using Deep Neural
Networks [68.8204255655161]
We adapt an ensemble of Convolutional Neural Networks to classify if a speaker is infected with COVID-19 or not.
Ultimately, it achieves an Unweighted Average Recall (UAR) of 74.9%, or an Area Under ROC Curve (AUC) of 80.7% by ensembling neural networks.
arXiv Detail & Related papers (2020-12-29T01:14:17Z) - Capturing scattered discriminative information using a deep architecture
in acoustic scene classification [49.86640645460706]
In this study, we investigate various methods to capture discriminative information and simultaneously mitigate the overfitting problem.
We adopt a max feature map method to replace conventional non-linear activations in a deep neural network.
Two data augment methods and two deep architecture modules are further explored to reduce overfitting and sustain the system's discriminative power.
arXiv Detail & Related papers (2020-07-09T08:32:06Z) - Deep Neural Network for Respiratory Sound Classification in Wearable
Devices Enabled by Patient Specific Model Tuning [2.8935588665357077]
We propose a deep CNN-RNN model that classifies respiratory sounds based on Mel-spectrograms.
We also implement a patient specific model tuning strategy that first screens respiratory patients and then builds patient specific classification models.
The proposed hybrid CNN-RNN model achieves a score of 66.31% on four-class classification of breathing cycles for ICBHI'17 scientific challenge respiratory sound database.
arXiv Detail & Related papers (2020-04-16T15:42:58Z) - Simultaneous Denoising and Dereverberation Using Deep Embedding Features [64.58693911070228]
We propose a joint training method for simultaneous speech denoising and dereverberation using deep embedding features.
At the denoising stage, the DC network is leveraged to extract noise-free deep embedding features.
At the dereverberation stage, instead of using the unsupervised K-means clustering algorithm, another neural network is utilized to estimate the anechoic speech.
arXiv Detail & Related papers (2020-04-06T06:34:01Z) - CNN-MoE based framework for classification of respiratory anomalies and
lung disease detection [33.45087488971683]
This paper presents and explores a robust deep learning framework for auscultation analysis.
It aims to classify anomalies in respiratory cycles and detect disease, from respiratory sound recordings.
arXiv Detail & Related papers (2020-04-04T21:45:06Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
Plant diseases serve as one of main threats to food security and crop production.
One popular approach is to transform this problem as a leaf image classification task, which can be addressed by the powerful convolutional neural networks (CNNs)
We propose a novel framework that incorporates rectified meta-learning module into common CNN paradigm to train a noise-robust deep network without using extra supervision information.
arXiv Detail & Related papers (2020-03-17T09:51:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.