Orlicz-Sobolev Transport for Unbalanced Measures on a Graph
- URL: http://arxiv.org/abs/2502.00739v1
- Date: Sun, 02 Feb 2025 10:16:09 GMT
- Title: Orlicz-Sobolev Transport for Unbalanced Measures on a Graph
- Authors: Tam Le, Truyen Nguyen, Hideitsu Hino, Kenji Fukumizu,
- Abstract summary: We consider entropy partial transport (EPT) for nonnegative measures on a graph.
We develop a novel EPT with Orlicz geometric structure, namely Orlicz-EPT, for unbalanced measures on a graph.
Especially, by exploiting the dual EPT formulation and geometric structures of the graph-based Orlicz-Sobolev space, we derive a novel regularization to propose Orlicz-Sobolev transport (OST)
- Score: 26.28795508071077
- License:
- Abstract: Moving beyond $L^p$ geometric structure, Orlicz-Wasserstein (OW) leverages a specific class of convex functions for Orlicz geometric structure. While OW remarkably helps to advance certain machine learning approaches, it has a high computational complexity due to its two-level optimization formula. Recently, Le et al. (2024) exploits graph structure to propose generalized Sobolev transport (GST), i.e., a scalable variant for OW. However, GST assumes that input measures have the same mass. Unlike optimal transport (OT), it is nontrivial to incorporate a mass constraint to extend GST for measures on a graph, possibly having different total mass. In this work, we propose to take a step back by considering the entropy partial transport (EPT) for nonnegative measures on a graph. By leveraging Caffarelli & McCann (2010)'s observations, EPT can be reformulated as a standard complete OT between two corresponding balanced measures. Consequently, we develop a novel EPT with Orlicz geometric structure, namely Orlicz-EPT, for unbalanced measures on a graph. Especially, by exploiting the dual EPT formulation and geometric structures of the graph-based Orlicz-Sobolev space, we derive a novel regularization to propose Orlicz-Sobolev transport (OST). The resulting distance can be efficiently computed by simply solving a univariate optimization problem, unlike the high-computational two-level optimization problem for Orlicz-EPT. Additionally, we derive geometric structures for the OST and draw its relations to other transport distances. We empirically show that OST is several-order faster than Orlicz-EPT. We further illustrate preliminary evidences on the advantages of OST for document classification, and several tasks in topological data analysis.
Related papers
- All You Need is Resistance: On the Equivalence of Effective Resistance and Certain Optimal Transport Problems on Graphs [48.84819106277247]
We claim that effective resistance and optimal transport on graphs should be understood as one and the same, up to a choice of $p$.
We show explicit connections to optimal stopping times and random walks on graphs, graph Sobolev spaces, and a Benamou-Brenier type formula for $2$-Beckmann distance.
We propose further study of the usage of these metrics where Wasserstein distance may produce computational bottlenecks.
arXiv Detail & Related papers (2024-04-23T17:50:52Z) - Generalized Sobolev Transport for Probability Measures on a Graph [26.64899319099165]
We study the optimal transport (OT) problem for measures supported on a graph metric space.
We leverage a specific class of convex functions for Orlicz structure to propose the generalized Sobolev transport ( GST)
We empirically illustrate that GST is several-order faster than the Orlicz-Wasserstein (OW)
arXiv Detail & Related papers (2024-02-07T01:49:03Z) - Tempered Calculus for ML: Application to Hyperbolic Model Embedding [70.61101116794549]
Most mathematical distortions used in ML are fundamentally integral in nature.
In this paper, we unveil a grounded theory and tools which can help improve these distortions to better cope with ML requirements.
We show how to apply it to a problem that has recently gained traction in ML: hyperbolic embeddings with a "cheap" and accurate encoding along the hyperbolic vsean scale.
arXiv Detail & Related papers (2024-02-06T17:21:06Z) - Scalable Unbalanced Sobolev Transport for Measures on a Graph [23.99177001129992]
Optimal transport (OT) is a powerful tool for comparing probability measures.
OT suffers a few drawbacks: (i) input measures required to have the same mass, (ii) a high computational complexity, and (iii) indefiniteness.
Le et al. (2022) recently proposed Sobolev transport for measures on a graph having the same total mass by leveraging the graph structure over supports.
We show that the proposed unbalanced Sobolev transport admits a closed-form formula for fast computation, and it is also negative definite.
arXiv Detail & Related papers (2023-02-24T07:35:38Z) - Markovian Sliced Wasserstein Distances: Beyond Independent Projections [51.80527230603978]
We introduce a new family of SW distances, named Markovian sliced Wasserstein (MSW) distance, which imposes a first-order Markov structure on projecting directions.
We compare distances with previous SW variants in various applications such as flows, color transfer, and deep generative modeling to demonstrate the favorable performance of MSW.
arXiv Detail & Related papers (2023-01-10T01:58:15Z) - Multi-task Learning of Order-Consistent Causal Graphs [59.9575145128345]
We consider the problem of discovering $K related Gaussian acyclic graphs (DAGs)
Under multi-task learning setting, we propose a $l_1/l$-regularized maximum likelihood estimator (MLE) for learning $K$ linear structural equation models.
We theoretically show that the joint estimator, by leveraging data across related tasks, can achieve a better sample complexity for recovering the causal order.
arXiv Detail & Related papers (2021-11-03T22:10:18Z) - On Multimarginal Partial Optimal Transport: Equivalent Forms and
Computational Complexity [11.280177531118206]
We study the multi-marginal partial optimal transport (POT) problem between $m$ discrete (unbalanced) measures with at most $n$ supports.
We first prove that we can obtain two equivalence forms of the multimarginal POT problem in terms of the multimarginal optimal transport problem via novel extensions of cost tensor.
We demonstrate that the ApproxMPOT algorithm can approximate the optimal value of multimarginal POT problem with a computational complexity upper bound of the order $tildemathcalO(m3(n+1)m/ var
arXiv Detail & Related papers (2021-08-18T06:46:59Z) - Entropy Partial Transport with Tree Metrics: Theory and Practice [5.025654873456756]
We consider an textitentropy partial transport (EPT) problem for nonnegative measures on a tree having different masses.
We propose a novel regularization for EPT which admits fast computation and negative definiteness.
We empirically demonstrate that our regularization also provides effective approximations.
arXiv Detail & Related papers (2021-01-24T17:04:24Z) - On Projection Robust Optimal Transport: Sample Complexity and Model
Misspecification [101.0377583883137]
Projection robust (PR) OT seeks to maximize the OT cost between two measures by choosing a $k$-dimensional subspace onto which they can be projected.
Our first contribution is to establish several fundamental statistical properties of PR Wasserstein distances.
Next, we propose the integral PR Wasserstein (IPRW) distance as an alternative to the PRW distance, by averaging rather than optimizing on subspaces.
arXiv Detail & Related papers (2020-06-22T14:35:33Z) - Fast and Robust Comparison of Probability Measures in Heterogeneous
Spaces [62.35667646858558]
We introduce the Anchor Energy (AE) and Anchor Wasserstein (AW) distances, which are respectively the energy and Wasserstein distances instantiated on such representations.
Our main contribution is to propose a sweep line algorithm to compute AE emphexactly in log-quadratic time, where a naive implementation would be cubic.
We show that AE and AW perform well in various experimental settings at a fraction of the computational cost of popular GW approximations.
arXiv Detail & Related papers (2020-02-05T03:09:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.