On Projection Robust Optimal Transport: Sample Complexity and Model
Misspecification
- URL: http://arxiv.org/abs/2006.12301v5
- Date: Sat, 17 Jul 2021 06:11:56 GMT
- Title: On Projection Robust Optimal Transport: Sample Complexity and Model
Misspecification
- Authors: Tianyi Lin, Zeyu Zheng, Elynn Y. Chen, Marco Cuturi, Michael I. Jordan
- Abstract summary: Projection robust (PR) OT seeks to maximize the OT cost between two measures by choosing a $k$-dimensional subspace onto which they can be projected.
Our first contribution is to establish several fundamental statistical properties of PR Wasserstein distances.
Next, we propose the integral PR Wasserstein (IPRW) distance as an alternative to the PRW distance, by averaging rather than optimizing on subspaces.
- Score: 101.0377583883137
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optimal transport (OT) distances are increasingly used as loss functions for
statistical inference, notably in the learning of generative models or
supervised learning. Yet, the behavior of minimum Wasserstein estimators is
poorly understood, notably in high-dimensional regimes or under model
misspecification. In this work we adopt the viewpoint of projection robust (PR)
OT, which seeks to maximize the OT cost between two measures by choosing a
$k$-dimensional subspace onto which they can be projected. Our first
contribution is to establish several fundamental statistical properties of PR
Wasserstein distances, complementing and improving previous literature that has
been restricted to one-dimensional and well-specified cases. Next, we propose
the integral PR Wasserstein (IPRW) distance as an alternative to the PRW
distance, by averaging rather than optimizing on subspaces. Our complexity
bounds can help explain why both PRW and IPRW distances outperform Wasserstein
distances empirically in high-dimensional inference tasks. Finally, we consider
parametric inference using the PRW distance. We provide an asymptotic guarantee
of two types of minimum PRW estimators and formulate a central limit theorem
for max-sliced Wasserstein estimator under model misspecification. To enable
our analysis on PRW with projection dimension larger than one, we devise a
novel combination of variational analysis and statistical theory.
Related papers
- Distributionally Robust Optimization as a Scalable Framework to Characterize Extreme Value Distributions [22.765095010254118]
The goal of this paper is to develop distributionally robust optimization (DRO) estimators, specifically for multidimensional Extreme Value Theory (EVT) statistics.
In order to mitigate over-conservative estimates while enhancing out-of-sample performance, we study DRO estimators informed by semi-parametric max-stable constraints in the space of point processes.
Both approaches are validated using synthetically generated data, recovering prescribed characteristics, and verifying the efficacy of the proposed techniques.
arXiv Detail & Related papers (2024-07-31T19:45:27Z) - Markovian Sliced Wasserstein Distances: Beyond Independent Projections [51.80527230603978]
We introduce a new family of SW distances, named Markovian sliced Wasserstein (MSW) distance, which imposes a first-order Markov structure on projecting directions.
We compare distances with previous SW variants in various applications such as flows, color transfer, and deep generative modeling to demonstrate the favorable performance of MSW.
arXiv Detail & Related papers (2023-01-10T01:58:15Z) - Optimal 1-Wasserstein Distance for WGANs [2.1174215880331775]
We provide a thorough analysis of Wasserstein GANs (WGANs) in both the finite sample and regimes.
We derive in passing new results on optimal transport theory in the semi-discrete setting.
arXiv Detail & Related papers (2022-01-08T13:04:03Z) - Near-optimal estimation of smooth transport maps with kernel
sums-of-squares [81.02564078640275]
Under smoothness conditions, the squared Wasserstein distance between two distributions could be efficiently computed with appealing statistical error upper bounds.
The object of interest for applications such as generative modeling is the underlying optimal transport map.
We propose the first tractable algorithm for which the statistical $L2$ error on the maps nearly matches the existing minimax lower-bounds for smooth map estimation.
arXiv Detail & Related papers (2021-12-03T13:45:36Z) - Continuous Wasserstein-2 Barycenter Estimation without Minimax
Optimization [94.18714844247766]
Wasserstein barycenters provide a geometric notion of the weighted average of probability measures based on optimal transport.
We present a scalable algorithm to compute Wasserstein-2 barycenters given sample access to the input measures.
arXiv Detail & Related papers (2021-02-02T21:01:13Z) - Projected Statistical Methods for Distributional Data on the Real Line
with the Wasserstein Metric [0.0]
We present a novel class of projected methods, to perform statistical analysis on a data set of probability distributions on the real line.
We focus in particular on Principal Component Analysis (PCA) and regression.
Several theoretical properties of the models are investigated and consistency is proven.
arXiv Detail & Related papers (2021-01-22T10:24:49Z) - Two-sample Test using Projected Wasserstein Distance [18.46110328123008]
We develop a projected Wasserstein distance for the two-sample test, a fundamental problem in statistics and machine learning.
A key contribution is to couple optimal projection to find the low dimensional linear mapping to maximize the Wasserstein distance between projected probability distributions.
arXiv Detail & Related papers (2020-10-22T18:08:58Z) - Augmented Sliced Wasserstein Distances [55.028065567756066]
We propose a new family of distance metrics, called augmented sliced Wasserstein distances (ASWDs)
ASWDs are constructed by first mapping samples to higher-dimensional hypersurfaces parameterized by neural networks.
Numerical results demonstrate that the ASWD significantly outperforms other Wasserstein variants for both synthetic and real-world problems.
arXiv Detail & Related papers (2020-06-15T23:00:08Z) - Projection Robust Wasserstein Distance and Riemannian Optimization [107.93250306339694]
We show that projection robustly solidstein (PRW) is a robust variant of Wasserstein projection (WPP)
This paper provides a first step into the computation of the PRW distance and provides the links between their theory and experiments on and real data.
arXiv Detail & Related papers (2020-06-12T20:40:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.