Zero-Shot Warning Generation for Misinformative Multimodal Content
- URL: http://arxiv.org/abs/2502.00752v1
- Date: Sun, 02 Feb 2025 11:18:05 GMT
- Title: Zero-Shot Warning Generation for Misinformative Multimodal Content
- Authors: Giovanni Pio Delvecchio, Huy Hong Nguyen, Isao Echizen,
- Abstract summary: Out-of-context misinformation, where authentic images are paired with false text, is particularly deceptive and easily misleads audiences.
We present a model that detects multimodal misinformation through cross-modality consistency checks, requiring minimal training time.
We also introduce a dual-purpose zero-shot learning task for generating contextualized warnings, enabling automated debunking and enhancing user comprehension.
- Score: 6.7932860553262415
- License:
- Abstract: The widespread prevalence of misinformation poses significant societal concerns. Out-of-context misinformation, where authentic images are paired with false text, is particularly deceptive and easily misleads audiences. Most existing detection methods primarily evaluate image-text consistency but often lack sufficient explanations, which are essential for effectively debunking misinformation. We present a model that detects multimodal misinformation through cross-modality consistency checks, requiring minimal training time. Additionally, we propose a lightweight model that achieves competitive performance using only one-third of the parameters. We also introduce a dual-purpose zero-shot learning task for generating contextualized warnings, enabling automated debunking and enhancing user comprehension. Qualitative and human evaluations of the generated warnings highlight both the potential and limitations of our approach.
Related papers
- On the Fairness, Diversity and Reliability of Text-to-Image Generative Models [49.60774626839712]
multimodal generative models have sparked critical discussions on their fairness, reliability, and potential for misuse.
We propose an evaluation framework designed to assess model reliability through their responses to perturbations in the embedding space.
Our method lays the groundwork for detecting unreliable, bias-injected models and retrieval of bias provenance.
arXiv Detail & Related papers (2024-11-21T09:46:55Z) - SteerDiff: Steering towards Safe Text-to-Image Diffusion Models [5.781285400461636]
Text-to-image (T2I) diffusion models can be misused to produce inappropriate content.
We introduce SteerDiff, a lightweight adaptor module designed to act as an intermediary between user input and the diffusion model.
We conduct extensive experiments across various concept unlearning tasks to evaluate the effectiveness of our approach.
arXiv Detail & Related papers (2024-10-03T17:34:55Z) - Detecting, Explaining, and Mitigating Memorization in Diffusion Models [49.438362005962375]
We introduce a straightforward yet effective method for detecting memorized prompts by inspecting the magnitude of text-conditional predictions.
Our proposed method seamlessly integrates without disrupting sampling algorithms, and delivers high accuracy even at the first generation step.
Building on our detection strategy, we unveil an explainable approach that shows the contribution of individual words or tokens to memorization.
arXiv Detail & Related papers (2024-07-31T16:13:29Z) - Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
Adrial robustness has been conventionally believed as a challenging property to encode for neural networks.
We develop a scalable and model-agnostic solution to achieve adversarial robustness without using any data.
arXiv Detail & Related papers (2024-07-26T10:49:14Z) - SNIFFER: Multimodal Large Language Model for Explainable Out-of-Context
Misinformation Detection [18.356648843815627]
Out-of-context (OOC) misinformation is one of the easiest and most effective ways to mislead audiences.
Current methods focus on assessing image-text consistency but lack convincing explanations for their judgments.
We introduce SNIFFER, a novel multimodal large language model specifically engineered for OOC misinformation detection and explanation.
arXiv Detail & Related papers (2024-03-05T18:04:59Z) - Clarify: Improving Model Robustness With Natural Language Corrections [59.041682704894555]
The standard way to teach models is by feeding them lots of data.
This approach often teaches models incorrect ideas because they pick up on misleading signals in the data.
We propose Clarify, a novel interface and method for interactively correcting model misconceptions.
arXiv Detail & Related papers (2024-02-06T05:11:38Z) - Less is More: A Closer Look at Semantic-based Few-Shot Learning [11.724194320966959]
Few-shot Learning aims to learn and distinguish new categories with a very limited number of available images.
We propose a simple but effective framework for few-shot learning tasks, specifically designed to exploit the textual information and language model.
Our experiments conducted across four widely used few-shot datasets demonstrate that our simple framework achieves impressive results.
arXiv Detail & Related papers (2024-01-10T08:56:02Z) - Interpretable Detection of Out-of-Context Misinformation with Neural-Symbolic-Enhanced Large Multimodal Model [16.348950072491697]
Misinformation creators now more tend to use out-of- multimedia contents to deceive the public and fake news detection systems.
This new type of misinformation increases the difficulty of not only detection but also clarification, because every individual modality is close enough to true information.
In this paper we explore how to achieve interpretable cross-modal de-contextualization detection that simultaneously identifies the mismatched pairs and the cross-modal contradictions.
arXiv Detail & Related papers (2023-04-15T21:11:55Z) - Exploring the Trade-off between Plausibility, Change Intensity and
Adversarial Power in Counterfactual Explanations using Multi-objective
Optimization [73.89239820192894]
We argue that automated counterfactual generation should regard several aspects of the produced adversarial instances.
We present a novel framework for the generation of counterfactual examples.
arXiv Detail & Related papers (2022-05-20T15:02:53Z) - Stylized Adversarial Defense [105.88250594033053]
adversarial training creates perturbation patterns and includes them in the training set to robustify the model.
We propose to exploit additional information from the feature space to craft stronger adversaries.
Our adversarial training approach demonstrates strong robustness compared to state-of-the-art defenses.
arXiv Detail & Related papers (2020-07-29T08:38:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.