Mirror Descent Under Generalized Smoothness
- URL: http://arxiv.org/abs/2502.00753v1
- Date: Sun, 02 Feb 2025 11:23:10 GMT
- Title: Mirror Descent Under Generalized Smoothness
- Authors: Dingzhi Yu, Wei Jiang, Yuanyu Wan, Lijun Zhang,
- Abstract summary: We introduce a new $ell*$-smoothness concept that measures the norm of Hessian terms of a general norm and its dual.
We establish convergence for mirror-descent-type algorithms, matching the rates under the classic smoothness.
- Score: 23.5387392871236
- License:
- Abstract: Smoothness is crucial for attaining fast rates in first-order optimization. However, many optimization problems in modern machine learning involve non-smooth objectives. Recent studies relax the smoothness assumption by allowing the Lipschitz constant of the gradient to grow with respect to the gradient norm, which accommodates a broad range of objectives in practice. Despite this progress, existing generalizations of smoothness are restricted to Euclidean geometry with $\ell_2$-norm and only have theoretical guarantees for optimization in the Euclidean space. In this paper, we address this limitation by introducing a new $\ell*$-smoothness concept that measures the norm of Hessian in terms of a general norm and its dual, and establish convergence for mirror-descent-type algorithms, matching the rates under the classic smoothness. Notably, we propose a generalized self-bounding property that facilitates bounding the gradients via controlling suboptimality gaps, serving as a principal component for convergence analysis. Beyond deterministic optimization, we establish an anytime convergence for stochastic mirror descent based on a new bounded noise condition that encompasses the widely adopted bounded or affine noise assumptions.
Related papers
- Gradient-Variation Online Learning under Generalized Smoothness [56.38427425920781]
gradient-variation online learning aims to achieve regret guarantees that scale with variations in gradients of online functions.
Recent efforts in neural network optimization suggest a generalized smoothness condition, allowing smoothness to correlate with gradient norms.
We provide the applications for fast-rate convergence in games and extended adversarial optimization.
arXiv Detail & Related papers (2024-08-17T02:22:08Z) - Directional Smoothness and Gradient Methods: Convergence and Adaptivity [16.779513676120096]
We develop new sub-optimality bounds for gradient descent that depend on the conditioning of the objective along the path of optimization.
Key to our proofs is directional smoothness, a measure of gradient variation that we use to develop upper-bounds on the objective.
We prove that the Polyak step-size and normalized GD obtain fast, path-dependent rates despite using no knowledge of the directional smoothness.
arXiv Detail & Related papers (2024-03-06T22:24:05Z) - Smoothing the Edges: Smooth Optimization for Sparse Regularization using Hadamard Overparametrization [10.009748368458409]
We present a framework for smooth optimization of explicitly regularized objectives for (structured) sparsity.
Our method enables fully differentiable approximation-free optimization and is thus compatible with the ubiquitous gradient descent paradigm in deep learning.
arXiv Detail & Related papers (2023-07-07T13:06:12Z) - Convex and Non-convex Optimization Under Generalized Smoothness [69.69521650503431]
An analysis of convex and non- optimization methods often requires the Lipsitzness gradient, which limits the analysis by this trajectorys.
Recent work generalizes the gradient setting via the non-uniform smoothness condition.
arXiv Detail & Related papers (2023-06-02T04:21:59Z) - Proximal Subgradient Norm Minimization of ISTA and FISTA [8.261388753972234]
We show that the squared proximal subgradient norm for the class of iterative shrinkage-thresholding algorithms converges at an inverse square rate.
We also show that the squared proximal subgradient norm for the class of faster iterative shrinkage-thresholding algorithms (FISTA) is accelerated to convergence at an inverse cubic rate.
arXiv Detail & Related papers (2022-11-03T06:50:19Z) - Faster Algorithm and Sharper Analysis for Constrained Markov Decision
Process [56.55075925645864]
The problem of constrained decision process (CMDP) is investigated, where an agent aims to maximize the expected accumulated discounted reward subject to multiple constraints.
A new utilities-dual convex approach is proposed with novel integration of three ingredients: regularized policy, dual regularizer, and Nesterov's gradient descent dual.
This is the first demonstration that nonconcave CMDP problems can attain the lower bound of $mathcal O (1/epsilon)$ for all complexity optimization subject to convex constraints.
arXiv Detail & Related papers (2021-10-20T02:57:21Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
It is essential to theoretically guarantee that algorithms provide small objective residual with high probability.
Existing methods for non-smooth convex optimization have complexity bounds with dependence on confidence level.
We propose novel stepsize rules for two methods with gradient clipping.
arXiv Detail & Related papers (2021-06-10T17:54:21Z) - Efficient Methods for Structured Nonconvex-Nonconcave Min-Max
Optimization [98.0595480384208]
We propose a generalization extraient spaces which converges to a stationary point.
The algorithm applies not only to general $p$-normed spaces, but also to general $p$-dimensional vector spaces.
arXiv Detail & Related papers (2020-10-31T21:35:42Z) - Adaptive extra-gradient methods for min-max optimization and games [35.02879452114223]
We present a new family of minmax optimization algorithms that automatically exploit the geometry of the gradient data observed at earlier iterations.
Thanks to this adaptation mechanism, the proposed method automatically detects whether the problem is smooth or not.
It converges to an $varepsilon$-optimal solution within $mathcalO (1/varepsilon)$ iterations in smooth problems, and within $mathcalO (1/varepsilon)$ iterations in non-smooth ones.
arXiv Detail & Related papers (2020-10-22T22:54:54Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.