Learning-Based TSP-Solvers Tend to Be Overly Greedy
- URL: http://arxiv.org/abs/2502.00767v1
- Date: Sun, 02 Feb 2025 12:06:13 GMT
- Title: Learning-Based TSP-Solvers Tend to Be Overly Greedy
- Authors: Xiayang Li, Shihua Zhang,
- Abstract summary: This study constructs a statistical measure called nearest-neighbor density to verify the properties of randomly generated instance of learning-based solvers.
We validate that the performance of the learning-based solvers degenerates much on such augmented data.
In short, we decipher the limitations of learning-based TSP solvers tending to be overly greedy, which may have profound implications for AI-empowered optimization solvers.
- Score: 8.79364699260219
- License:
- Abstract: Deep learning has shown significant potential in solving combinatorial optimization problems such as the Euclidean traveling salesman problem (TSP). However, most training and test instances for existing TSP algorithms are generated randomly from specific distributions like uniform distribution. This has led to a lack of analysis and understanding of the performance of deep learning algorithms in out-of-distribution (OOD) generalization scenarios, which has a close relationship with the worst-case performance in the combinatorial optimization field. For data-driven algorithms, the statistical properties of randomly generated datasets are critical. This study constructs a statistical measure called nearest-neighbor density to verify the asymptotic properties of randomly generated datasets and reveal the greedy behavior of learning-based solvers, i.e., always choosing the nearest neighbor nodes to construct the solution path. Based on this statistical measure, we develop interpretable data augmentation methods that rely on distribution shifts or instance perturbations and validate that the performance of the learning-based solvers degenerates much on such augmented data. Moreover, fine-tuning learning-based solvers with augmented data further enhances their generalization abilities. In short, we decipher the limitations of learning-based TSP solvers tending to be overly greedy, which may have profound implications for AI-empowered combinatorial optimization solvers.
Related papers
- Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
This paper focuses on performance analysis and optimization for wireless FL, considering data heterogeneity, combined with wireless resource allocation.
We formulate the loss function minimization problem, under constraints on long-term energy consumption and latency, and jointly optimize client scheduling, resource allocation, and the number of local training epochs (CRE)
Experiments on real-world datasets demonstrate that the proposed algorithm outperforms other benchmarks in terms of the learning accuracy and energy consumption.
arXiv Detail & Related papers (2023-08-04T04:18:01Z) - Personalized Decentralized Multi-Task Learning Over Dynamic
Communication Graphs [59.96266198512243]
We propose a decentralized and federated learning algorithm for tasks that are positively and negatively correlated.
Our algorithm uses gradients to calculate the correlations among tasks automatically, and dynamically adjusts the communication graph to connect mutually beneficial tasks and isolate those that may negatively impact each other.
We conduct experiments on a synthetic Gaussian dataset and a large-scale celebrity attributes (CelebA) dataset.
arXiv Detail & Related papers (2022-12-21T18:58:24Z) - On the Generalization for Transfer Learning: An Information-Theoretic Analysis [8.102199960821165]
We give an information-theoretic analysis of the generalization error and excess risk of transfer learning algorithms.
Our results suggest, perhaps as expected, that the Kullback-Leibler divergenceD(mu|mu')$ plays an important role in the characterizations.
We then generalize the mutual information bound with other divergences such as $phi$-divergence and Wasserstein distance.
arXiv Detail & Related papers (2022-07-12T08:20:41Z) - Deep Equilibrium Assisted Block Sparse Coding of Inter-dependent
Signals: Application to Hyperspectral Imaging [71.57324258813675]
A dataset of inter-dependent signals is defined as a matrix whose columns demonstrate strong dependencies.
A neural network is employed to act as structure prior and reveal the underlying signal interdependencies.
Deep unrolling and Deep equilibrium based algorithms are developed, forming highly interpretable and concise deep-learning-based architectures.
arXiv Detail & Related papers (2022-03-29T21:00:39Z) - Contextual Model Aggregation for Fast and Robust Federated Learning in
Edge Computing [88.76112371510999]
Federated learning is a prime candidate for distributed machine learning at the network edge.
Existing algorithms face issues with slow convergence and/or robustness of performance.
We propose a contextual aggregation scheme that achieves the optimal context-dependent bound on loss reduction.
arXiv Detail & Related papers (2022-03-23T21:42:31Z) - A Differentiable Approach to Combinatorial Optimization using Dataless
Neural Networks [20.170140039052455]
We propose a radically different approach in that no data is required for training the neural networks that produce the solution.
In particular, we reduce the optimization problem to a neural network and employ a dataless training scheme to refine the parameters of the network such that those parameters yield the structure of interest.
arXiv Detail & Related papers (2022-03-15T19:21:31Z) - Resource-constrained Federated Edge Learning with Heterogeneous Data:
Formulation and Analysis [8.863089484787835]
We propose a distributed approximate Newton-type Newton-type training scheme, namely FedOVA, to solve the heterogeneous statistical challenge brought by heterogeneous data.
FedOVA decomposes a multi-class classification problem into more straightforward binary classification problems and then combines their respective outputs using ensemble learning.
arXiv Detail & Related papers (2021-10-14T17:35:24Z) - Sample-based and Feature-based Federated Learning via Mini-batch SSCA [18.11773963976481]
This paper investigates sample-based and feature-based federated optimization.
We show that the proposed algorithms can preserve data privacy through the model aggregation mechanism.
We also show that the proposed algorithms converge to Karush-Kuhn-Tucker points of the respective federated optimization problems.
arXiv Detail & Related papers (2021-04-13T08:23:46Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
The distributionally robust optimization framework is considered for training a parametric model.
The objective is to endow the trained model with robustness against adversarially manipulated input data.
Proposed algorithms offer robustness with little overhead.
arXiv Detail & Related papers (2020-07-07T18:25:25Z) - Dynamic Federated Learning [57.14673504239551]
Federated learning has emerged as an umbrella term for centralized coordination strategies in multi-agent environments.
We consider a federated learning model where at every iteration, a random subset of available agents perform local updates based on their data.
Under a non-stationary random walk model on the true minimizer for the aggregate optimization problem, we establish that the performance of the architecture is determined by three factors, namely, the data variability at each agent, the model variability across all agents, and a tracking term that is inversely proportional to the learning rate of the algorithm.
arXiv Detail & Related papers (2020-02-20T15:00:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.