論文の概要: Estimating forest carbon stocks from high-resolution remote sensing imagery by reducing domain shift with style transfer
- arxiv url: http://arxiv.org/abs/2502.00784v1
- Date: Sun, 02 Feb 2025 12:45:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 14:56:53.898324
- Title: Estimating forest carbon stocks from high-resolution remote sensing imagery by reducing domain shift with style transfer
- Title(参考訳): 高分解能リモートセンシング画像からの森林炭素ストックの推定
- Authors: Zhenyu Yu, Jinnian Wang,
- Abstract要約: 森林は土地の重要な炭素貯水池として機能し、その炭素シンクは大気中の二酸化炭素濃度を効率的に削減し、気候変動を緩和することができる。
現在、森林炭素在庫のモニタリングと評価の全体的な傾向は、地上モニタリングサンプルデータと衛星リモートセンシング画像を統合することである。
我々は,中国雲南省清市Huize郡においてGF-1 WFVとLandsat TM画像を用いて解析を行った。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Forests function as crucial carbon reservoirs on land, and their carbon sinks can efficiently reduce atmospheric CO2 concentrations and mitigate climate change. Currently, the overall trend for monitoring and assessing forest carbon stocks is to integrate ground monitoring sample data with satellite remote sensing imagery. This style of analysis facilitates large-scale observation. However, these techniques require improvement in accuracy. We used GF-1 WFV and Landsat TM images to analyze Huize County, Qujing City, Yunnan Province in China. Using the style transfer method, we introduced Swin Transformer to extract global features through attention mechanisms, converting the carbon stock estimation into an image translation.
- Abstract(参考訳): 森林は土地の重要な炭素貯水池として機能し、その炭素シンクは大気中の二酸化炭素濃度を効率的に削減し、気候変動を緩和することができる。
現在、森林炭素在庫のモニタリングと評価の全体的な傾向は、地上モニタリングサンプルデータと衛星リモートセンシング画像を統合することである。
この分析のスタイルは大規模な観察を促進する。
しかし、これらの技術は精度の向上を必要とする。
我々は,中国雲南省清市Huize郡においてGF-1 WFVとLandsat TM画像を用いて解析を行った。
スウィントランスフォーマを導入し,注意機構を用いてグローバルな特徴を抽出し,炭素ストック推定を画像翻訳に変換する。
関連論文リスト
- A method for estimating forest carbon storage distribution density via artificial intelligence generated content model [0.0]
我々は、GF-1 WFV衛星画像をデータとして、初期特徴を抽出するためにKD-VGGモジュールを導入し、改良された暗黙拡散モデル(IIDM)を提案した。
今回提案したIIDMモデルは, RMSEが28.68であり, 回帰モデルよりも13.16, 約31.45%高かった。
炭素貯蔵量の推定において, 生成モデルはより深い特徴を抽出でき, 性能は他のモデルよりも有意に優れていた。
論文 参考訳(メタデータ) (2025-02-02T12:41:47Z) - Improved implicit diffusion model with knowledge distillation to estimate the spatial distribution density of carbon stock in remote sensing imagery [0.0]
本研究は,GF-1 WFV衛星画像を用いて,中国雲南省清市Huize郡を対象とする。
VGGモジュールは初期特徴抽出を改善し、最適化されたパラメータで推論時間を短縮した。
IIDMモデルはRMSEが12.17%と高い推定精度を示し、回帰モデルと比較して41.69%から42.33%改善した。
論文 参考訳(メタデータ) (2024-11-27T01:06:05Z) - Machine Learning for Methane Detection and Quantification from Space -- A survey [49.7996292123687]
メタン (CH_4) は強力な温室効果ガスであり、20年間で二酸化炭素 (CO_2) の86倍の温暖化に寄与する。
この研究は、ショートウェーブ赤外線(SWIR)帯域におけるメタン点源検出センサの既存の情報を拡張する。
従来の機械学習(ML)アプローチと同様に、最先端の技術をレビューする。
論文 参考訳(メタデータ) (2024-08-27T15:03:20Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
気象予測において重要な課題であるダウンスケーリングは、ターゲット領域に対する高解像度気象状態の再構築を可能にする。
以前のダウンスケーリング手法には気象学のための調整された設計が欠けており、構造的な限界に遭遇した。
本稿では,多変数相関と地形情報の利用性を高める新しいモデルであるMambaDSを提案する。
論文 参考訳(メタデータ) (2024-08-20T13:45:49Z) - Very high resolution canopy height maps from RGB imagery using
self-supervised vision transformer and convolutional decoder trained on
Aerial Lidar [14.07306593230776]
本稿では,複数の非国家の管轄区域で同時に作成される最初の高分解能天蓋の高さマップについて述べる。
地図は、2017年から2020年にかけて、マクサー画像に基づいて訓練された自己教師モデルから特徴を抽出することによって生成される。
また、GEDI観測に基づいて訓練された畳み込みネットワークを用いた後処理のステップも導入する。
論文 参考訳(メタデータ) (2023-04-14T15:52:57Z) - De-risking Carbon Capture and Sequestration with Explainable CO2 Leakage
Detection in Time-lapse Seismic Monitoring Images [2.021175152213487]
本研究では,最新の深層学習モデルを用いて,CO2プラム(リーカジ)をデライン化するために,時間ラプス地震画像のバイナリ分類を導入する。
また,クラスアクティベーションマッピング手法を用いて,CO2プラムの漏洩領域をローカライズする。
論文 参考訳(メタデータ) (2022-12-16T17:22:51Z) - Real-time high-resolution CO$_2$ geological storage prediction using
nested Fourier neural operators [58.728312684306545]
炭素捕獲貯蔵(CCS)は、地球規模の脱炭酸に不可欠な役割を担っている。
CCS展開のスケールアップには, 貯留層圧力上昇とガス配管マイグレーションの高精度かつ高精度なモデリングが必要である。
我々は,高分解能な3D CO2ストレージモデリングのための機械学習フレームワークであるNested Fourier Neural Operator (FNO)を,盆地スケールで導入した。
論文 参考訳(メタデータ) (2022-10-31T04:04:03Z) - Neuroevolution-based Classifiers for Deforestation Detection in Tropical
Forests [62.997667081978825]
森林破壊や荒廃により、毎年何百万ヘクタールもの熱帯林が失われる。
監視・森林破壊検知プログラムは、犯罪者の予防・処罰のための公共政策に加えて、使用されている。
本稿では,熱帯林の森林破壊検出作業におけるニューロ進化技術(NEAT)に基づくパターン分類器の利用を提案する。
論文 参考訳(メタデータ) (2022-08-23T16:04:12Z) - Country-wide Retrieval of Forest Structure From Optical and SAR
Satellite Imagery With Bayesian Deep Learning [74.94436509364554]
本研究では,10mの解像度で森林構造変数を高密度に推定するベイズ深層学習手法を提案する。
本手法は,Sentinel-2光画像とSentinel-1合成開口レーダ画像を5種類の森林構造変数のマップに変換する。
ノルウェーを横断する41の空中レーザー走査ミッションの基準データに基づいて、我々のモデルを訓練し、テストする。
論文 参考訳(メタデータ) (2021-11-25T16:21:28Z) - Tackling the Overestimation of Forest Carbon with Deep Learning and
Aerial Imagery [13.97765383479824]
本論文は,航空画像,衛星画像,地中構造観測から森林炭素推定を初めて体系的に比較したものである。
航空画像の収集は著しく高価であり,高分解能が森林炭素推定をどの程度改善するかは定かでない。
以上の結果から,衛星画像による森林炭素推定は,熱帯再植林計画において10回以上も過大評価可能であることが示唆された。
論文 参考訳(メタデータ) (2021-07-23T15:59:52Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
我々は,機械モデリングと衛星データ利用の並列化を活用し,作物生産性の高度モニタリングを行う。
本モデルでは, 地域情報を使用しなくても, 各種C3作物の種類, 環境条件の総合的生産性を推定することに成功した。
これは、現在の地球観測クラウドコンピューティングプラットフォームの助けを借りて、新しい衛星センサーから作物の生産性をグローバルにマップする可能性を強調しています。
論文 参考訳(メタデータ) (2020-12-07T16:23:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。