Adversarial Semantic Augmentation for Training Generative Adversarial Networks under Limited Data
- URL: http://arxiv.org/abs/2502.00800v1
- Date: Sun, 02 Feb 2025 13:50:38 GMT
- Title: Adversarial Semantic Augmentation for Training Generative Adversarial Networks under Limited Data
- Authors: Mengping Yang, Zhe Wang, Ziqiu Chi, Dongdong Li, Wenli Du,
- Abstract summary: We propose an adversarial semantic augmentation (ASA) technique to enlarge the training data at the semantic level instead of the image level.
Our method consistently improve the synthesis quality under various data regimes.
- Score: 27.27230943686822
- License:
- Abstract: Generative adversarial networks (GANs) have made remarkable achievements in synthesizing images in recent years. Typically, training GANs requires massive data, and the performance of GANs deteriorates significantly when training data is limited. To improve the synthesis performance of GANs in low-data regimes, existing approaches use various data augmentation techniques to enlarge the training sets. However, it is identified that these augmentation techniques may leak or even alter the data distribution. To remedy this, we propose an adversarial semantic augmentation (ASA) technique to enlarge the training data at the semantic level instead of the image level. Concretely, considering semantic features usually encode informative information of images, we estimate the covariance matrices of semantic features for both real and generated images to find meaningful transformation directions. Such directions translate original features to another semantic representation, e.g., changing the backgrounds or expressions of the human face dataset. Moreover, we derive an upper bound of the expected adversarial loss. By optimizing the upper bound, our semantic augmentation is implicitly achieved. Such design avoids redundant sampling of the augmented features and introduces negligible computation overhead, making our approach computation efficient. Extensive experiments on both few-shot and large-scale datasets demonstrate that our method consistently improve the synthesis quality under various data regimes, and further visualized and analytic results suggesting satisfactory versatility of our proposed method.
Related papers
- A Simple Background Augmentation Method for Object Detection with Diffusion Model [53.32935683257045]
In computer vision, it is well-known that a lack of data diversity will impair model performance.
We propose a simple yet effective data augmentation approach by leveraging advancements in generative models.
Background augmentation, in particular, significantly improves the models' robustness and generalization capabilities.
arXiv Detail & Related papers (2024-08-01T07:40:00Z) - Is Synthetic Image Useful for Transfer Learning? An Investigation into Data Generation, Volume, and Utilization [62.157627519792946]
We introduce a novel framework called bridged transfer, which initially employs synthetic images for fine-tuning a pre-trained model to improve its transferability.
We propose dataset style inversion strategy to improve the stylistic alignment between synthetic and real images.
Our proposed methods are evaluated across 10 different datasets and 5 distinct models, demonstrating consistent improvements.
arXiv Detail & Related papers (2024-03-28T22:25:05Z) - X-Transfer: A Transfer Learning-Based Framework for GAN-Generated Fake
Image Detection [33.31312811230408]
misuse of GANs for generating deceptive images, such as face replacement, raises significant security concerns.
This paper introduces a novel GAN-generated image detection algorithm called X-Transfer.
It enhances transfer learning by utilizing two neural networks that employ interleaved parallel gradient transmission.
arXiv Detail & Related papers (2023-10-07T01:23:49Z) - LD-GAN: Low-Dimensional Generative Adversarial Network for Spectral
Image Generation with Variance Regularization [72.4394510913927]
Deep learning methods are state-of-the-art for spectral image (SI) computational tasks.
GANs enable diverse augmentation by learning and sampling from the data distribution.
GAN-based SI generation is challenging since the high-dimensionality nature of this kind of data hinders the convergence of the GAN training yielding to suboptimal generation.
We propose a statistical regularization to control the low-dimensional representation variance for the autoencoder training and to achieve high diversity of samples generated with the GAN.
arXiv Detail & Related papers (2023-04-29T00:25:02Z) - Implicit Counterfactual Data Augmentation for Robust Learning [24.795542869249154]
This study proposes an Implicit Counterfactual Data Augmentation method to remove spurious correlations and make stable predictions.
Experiments have been conducted across various biased learning scenarios covering both image and text datasets.
arXiv Detail & Related papers (2023-04-26T10:36:40Z) - Adversarial and Random Transformations for Robust Domain Adaptation and
Generalization [9.995765847080596]
We show that by simply applying consistency training with random data augmentation, state-of-the-art results on domain adaptation (DA) and generalization (DG) can be obtained.
The combined adversarial and random transformations based method outperforms the state-of-the-art on multiple DA and DG benchmark datasets.
arXiv Detail & Related papers (2022-11-13T02:10:13Z) - Learning Representational Invariances for Data-Efficient Action
Recognition [52.23716087656834]
We show that our data augmentation strategy leads to promising performance on the Kinetics-100, UCF-101, and HMDB-51 datasets.
We also validate our data augmentation strategy in the fully supervised setting and demonstrate improved performance.
arXiv Detail & Related papers (2021-03-30T17:59:49Z) - Synthetic Convolutional Features for Improved Semantic Segmentation [139.5772851285601]
We suggest to generate intermediate convolutional features and propose the first synthesis approach that is catered to such intermediate convolutional features.
This allows us to generate new features from label masks and include them successfully into the training procedure.
Experimental results and analysis on two challenging datasets Cityscapes and ADE20K show that our generated feature improves performance on segmentation tasks.
arXiv Detail & Related papers (2020-09-18T14:12:50Z) - Adversarial Semantic Data Augmentation for Human Pose Estimation [96.75411357541438]
We propose Semantic Data Augmentation (SDA), a method that augments images by pasting segmented body parts with various semantic granularity.
We also propose Adversarial Semantic Data Augmentation (ASDA), which exploits a generative network to dynamiclly predict tailored pasting configuration.
State-of-the-art results are achieved on challenging benchmarks.
arXiv Detail & Related papers (2020-08-03T07:56:04Z) - Regularizing Deep Networks with Semantic Data Augmentation [44.53483945155832]
We propose a novel semantic data augmentation algorithm to complement traditional approaches.
The proposed method is inspired by the intriguing property that deep networks are effective in learning linearized features.
We show that the proposed implicit semantic data augmentation (ISDA) algorithm amounts to minimizing a novel robust CE loss.
arXiv Detail & Related papers (2020-07-21T00:32:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.