Doped resonating valence bond states: How robust are the spin ice phases in 3D Rydberg arrays
- URL: http://arxiv.org/abs/2502.00836v1
- Date: Sun, 02 Feb 2025 16:18:35 GMT
- Title: Doped resonating valence bond states: How robust are the spin ice phases in 3D Rydberg arrays
- Authors: Jingya Wang, Changle Liu, Yan-Cheng Wang, Zheng Yan,
- Abstract summary: Rydberg blockade effect provides a convenient platform for simulating locally constrained many-body systems.
To discuss the possible phase diagram containing different QSIs in 3D Rydberg arrays, here, we have constructed an extended Rokhsar-Kivelson (RK) Hamiltonian with equal-weight-superposition ground state.
- Score: 15.739000171264488
- License:
- Abstract: Rydberg blockade effect provides a convenient platform for simulating locally constrained many-body systems, such as quantum dimer models and quantum loop models, especially their novel phases like topological orders and gapless quantum spin ice (QSI) phases. To discuss the possible phase diagram containing different QSIs in 3D Rydberg arrays, here, we have constructed an extended Rokhsar-Kivelson (RK) Hamiltonian with equal-weight-superposition ground state in different fillings at the RK point. Therefore, both the perfect QSIs with fixed local dimer filling and their monomer-doped states can be simulated directly by Monte Carlo sampling. Using single mode approximation, the excitations of dimers and monomers have also been explored in different fillings. We find that, in the thermodynamical limit, even doping a small amount of monomers can disrupt the topological structure and lead to the existence of off-diagonal long-range order. However, in a finite size (as in cold-atom experiment), the property of QSI will be kept in a certain region like a crossover after doping. The phase diagram containing different QSIs and off-diagonal order phases is proposed.
Related papers
- Phase transitions and remnants of fractionalization at finite temperature in the triangular lattice quantum loop model [0.3495246564946556]
The quantum loop model (QLM) and the quantum dimer model (QDM) are archetypal correlated systems with local constraints.
Here we study, via unbiased quantum Monte Carlo simulations and field theoretical analysis, the finite temperature phase diagram of the QLM on the triangular lattice.
arXiv Detail & Related papers (2024-12-02T13:55:29Z) - Extending Quantum Perceptrons: Rydberg Devices, Multi-Class Classification, and Error Tolerance [67.77677387243135]
Quantum Neuromorphic Computing (QNC) merges quantum computation with neural computation to create scalable, noise-resilient algorithms for quantum machine learning (QML)
At the core of QNC is the quantum perceptron (QP), which leverages the analog dynamics of interacting qubits to enable universal quantum computation.
arXiv Detail & Related papers (2024-11-13T23:56:20Z) - Supersolidity in Rydberg tweezer arrays [0.41232474244672235]
Rydberg tweezer arrays provide a versatile platform to explore quantum magnets with dipolar XY or van-der-Waals Ising ZZ interactions.
We propose a scheme combining dipolar and van-der-Waals interactions between two Rydberg states, where the amplitude of the latter can be greater than that of the former.
On the triangular lattice with repulsive interactions, we predict the existence of a robust supersolid phase with a critical entropy per particle.
arXiv Detail & Related papers (2024-07-17T17:21:30Z) - Cubic* criticality emerging from a quantum loop model on triangular lattice [5.252398154171938]
We show that the triangular lattice quantum loop model (QLM) hosts a rich ground state phase diagram with nematic, vison plaquette (VP) crystals, and the $mathbb$ quantum spin liquid (QSL) close to the Rokhsar-Kivelson quantum critical point.
These solutions are of immediate relevance to both statistical and quantum field theories, as well as the rapidly growing experiments in Rydberg atom arrays and quantum moir'e materials.
arXiv Detail & Related papers (2023-09-11T18:00:05Z) - Dissipative preparation and stabilization of many-body quantum states in
a superconducting qutrit array [55.41644538483948]
We present and analyze a protocol for driven-dissipatively preparing and stabilizing a manifold of quantum manybody entangled states.
We perform theoretical modeling of this platform via pulse-level simulations based on physical features of real devices.
Our work shows the capacity of driven-dissipative superconducting cQED systems to host robust and self-corrected quantum manybody states.
arXiv Detail & Related papers (2023-03-21T18:02:47Z) - Fully packed quantum loop model on the square lattice: phase diagram and
application for Rydberg atoms [4.860868900388247]
We show the complete ground state phase diagram of the fully packed quantum loop model on the square lattice.
We find between the lattice nematic (LN) phase with strong dimer attraction and the staggered phase (SP) with strong dimer repulsion, there emerges a resonating plaquette (RP) phase.
Our renormalization group analysis reveals the different flow directions, fully consistent with the order parameter histogram in Monte Carlo simulations.
arXiv Detail & Related papers (2022-09-22T01:49:51Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Phase diagram of Rydberg-dressed atoms on two-leg square ladders:
Coupling supersymmetric conformal field theories on the lattice [52.77024349608834]
We investigate the phase diagram of hard-core bosons in two-leg ladders in the presence of soft-shoulder potentials.
We show how the competition between local and non-local terms gives rise to a phase diagram with liquid phases with dominant cluster, spin, and density-wave quasi-long-range ordering.
arXiv Detail & Related papers (2021-12-20T09:46:08Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Spin many-body phases in standard and topological waveguide QED
simulators [68.8204255655161]
We study the many-body behaviour of quantum spin models using waveguide QED setups.
We find novel many-body phases different from the ones obtained in other platforms.
arXiv Detail & Related papers (2021-06-22T09:44:20Z) - Quantum phases of Rydberg atoms on a kagome lattice [0.0]
We analyze the zero-temperature phases of an array of neutral atoms on the kagome lattice, interacting via laser excitation to atomic Rydberg states.
Density-matrix renormalization group calculations reveal the presence of a wide variety of complex solid phases with broken lattice symmetries.
We identify a novel regime with dense Rydberg excitations that has a large entanglement entropy and no local order parameter associated with lattice symmetries.
arXiv Detail & Related papers (2020-11-24T19:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.