Generating Computational Cognitive Models using Large Language Models
- URL: http://arxiv.org/abs/2502.00879v2
- Date: Sat, 17 May 2025 09:33:09 GMT
- Title: Generating Computational Cognitive Models using Large Language Models
- Authors: Milena Rmus, Akshay K. Jagadish, Marvin Mathony, Tobias Ludwig, Eric Schulz,
- Abstract summary: We introduce a pipeline for Guided generation of Computational Cognitive Models (GeCCo)<n>GeCCo prompts an LLM to propose candidate models, fits proposals to held-out data, and iteratively refines them based on their predictive performance.<n>We benchmark this approach across four different cognitive domains.
- Score: 4.269194018613294
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Computational cognitive models, which formalize theories of cognition, enable researchers to quantify cognitive processes and arbitrate between competing theories by fitting models to behavioral data. Traditionally, these models are handcrafted, which requires significant domain knowledge, coding expertise, and time investment. However, recent advances in machine learning offer solutions to these challenges. In particular, Large Language Models (LLMs) have demonstrated remarkable capabilities for in-context pattern recognition, leveraging knowledge from diverse domains to solve complex problems, and generating executable code that can be used to facilitate the generation of cognitive models. Building on this potential, we introduce a pipeline for Guided generation of Computational Cognitive Models (GeCCo). Given task instructions, participant data, and a template function, GeCCo prompts an LLM to propose candidate models, fits proposals to held-out data, and iteratively refines them based on feedback constructed from their predictive performance. We benchmark this approach across four different cognitive domains -- decision making, learning, planning, and memory -- using three open-source LLMs, spanning different model sizes, capacities, and families. On four human behavioral data sets, the LLM generated models that consistently matched or outperformed the best domain-specific models from the cognitive science literature. Taken together, our results suggest that LLMs can generate cognitive models with conceptually plausible theories that rival -- or even surpass -- the best models from the literature across diverse task domains.
Related papers
- A Comprehensive Survey on Continual Learning in Generative Models [35.76314482046672]
We present a comprehensive survey of continual learning methods for mainstream generative models.<n>We categorize these approaches into three paradigms: architecture-based, regularization-based, and replay-based.<n>We analyze continual learning setups for different generative models, including training objectives, benchmarks, and core backbones.
arXiv Detail & Related papers (2025-06-16T02:27:25Z) - The potential -- and the pitfalls -- of using pre-trained language models as cognitive science theories [2.6549754445378344]
We discuss challenges to the use of PLMs as cognitive science theories.<n>We review assumptions used by researchers to map measures of PLM performance to measures of human performance.<n>We end by enumerating criteria for using PLMs as credible accounts of cognition and cognitive development.
arXiv Detail & Related papers (2025-01-22T05:24:23Z) - Applying Large Language Models in Knowledge Graph-based Enterprise Modeling: Challenges and Opportunities [0.0]
Large language models (LLMs) in enterprise modeling have recently started to shift from academic research to that of industrial applications.<n>In this paper we employ a knowledge graph-based approach for enterprise modeling and investigate the potential benefits of LLMs.
arXiv Detail & Related papers (2025-01-07T06:34:17Z) - LLM-based Cognitive Models of Students with Misconceptions [55.29525439159345]
This paper investigates whether Large Language Models (LLMs) can be instruction-tuned to meet this dual requirement.
We introduce MalAlgoPy, a novel Python library that generates datasets reflecting authentic student solution patterns.
Our insights enhance our understanding of AI-based student models and pave the way for effective adaptive learning systems.
arXiv Detail & Related papers (2024-10-16T06:51:09Z) - On the Modeling Capabilities of Large Language Models for Sequential Decision Making [52.128546842746246]
Large pretrained models are showing increasingly better performance in reasoning and planning tasks.
We evaluate their ability to produce decision-making policies, either directly, by generating actions, or indirectly.
In environments with unfamiliar dynamics, we explore how fine-tuning LLMs with synthetic data can significantly improve their reward modeling capabilities.
arXiv Detail & Related papers (2024-10-08T03:12:57Z) - EmbedLLM: Learning Compact Representations of Large Language Models [28.49433308281983]
We propose EmbedLLM, a framework designed to learn compact vector representations of Large Language Models.
We introduce an encoder-decoder approach for learning such embeddings, along with a systematic framework to evaluate their effectiveness.
Empirical results show that EmbedLLM outperforms prior methods in model routing both in accuracy and latency.
arXiv Detail & Related papers (2024-10-03T05:43:24Z) - SIaM: Self-Improving Code-Assisted Mathematical Reasoning of Large Language Models [54.78329741186446]
We propose a novel paradigm that uses a code-based critic model to guide steps including question-code data construction, quality control, and complementary evaluation.
Experiments across both in-domain and out-of-domain benchmarks in English and Chinese demonstrate the effectiveness of the proposed paradigm.
arXiv Detail & Related papers (2024-08-28T06:33:03Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTR is a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making.
Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations.
Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability.
arXiv Detail & Related papers (2024-08-17T11:49:53Z) - Language Models Trained to do Arithmetic Predict Human Risky and Intertemporal Choice [4.029252551781513]
We propose a novel way to enhance the utility of Large Language Models as cognitive models.
We show that an LLM pretrained on an ecologically valid arithmetic dataset, predicts human behavior better than many traditional cognitive models.
arXiv Detail & Related papers (2024-05-29T17:37:14Z) - Towards Modeling Learner Performance with Large Language Models [7.002923425715133]
This paper investigates whether the pattern recognition and sequence modeling capabilities of LLMs can be extended to the domain of knowledge tracing.
We compare two approaches to using LLMs for this task, zero-shot prompting and model fine-tuning, with existing, non-LLM approaches to knowledge tracing.
While LLM-based approaches do not achieve state-of-the-art performance, fine-tuned LLMs surpass the performance of naive baseline models and perform on par with standard Bayesian Knowledge Tracing approaches.
arXiv Detail & Related papers (2024-02-29T14:06:34Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
We study how to characterize and predict the truthfulness of texts generated from large language models (LLMs)
We suggest investigating internal activations and quantifying LLM's truthfulness using the local intrinsic dimension (LID) of model activations.
arXiv Detail & Related papers (2024-02-28T04:56:21Z) - Exploring the Cognitive Knowledge Structure of Large Language Models: An
Educational Diagnostic Assessment Approach [50.125704610228254]
Large Language Models (LLMs) have not only exhibited exceptional performance across various tasks, but also demonstrated sparks of intelligence.
Recent studies have focused on assessing their capabilities on human exams and revealed their impressive competence in different domains.
We conduct an evaluation using MoocRadar, a meticulously annotated human test dataset based on Bloom taxonomy.
arXiv Detail & Related papers (2023-10-12T09:55:45Z) - MinT: Boosting Generalization in Mathematical Reasoning via Multi-View
Fine-Tuning [53.90744622542961]
Reasoning in mathematical domains remains a significant challenge for small language models (LMs)
We introduce a new method that exploits existing mathematical problem datasets with diverse annotation styles.
Experimental results show that our strategy enables a LLaMA-7B model to outperform prior approaches.
arXiv Detail & Related papers (2023-07-16T05:41:53Z) - Turning large language models into cognitive models [0.0]
We show that large language models can be turned into cognitive models.
These models offer accurate representations of human behavior, even outperforming traditional cognitive models in two decision-making domains.
Taken together, these results suggest that large, pre-trained models can be adapted to become generalist cognitive models.
arXiv Detail & Related papers (2023-06-06T18:00:01Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
We show that mixture-of-experts (MoE) techniques can achieve state-of-the-art performance on a range of benchmarks over dense models of equivalent computational cost.
Our research offers valuable insights into stabilizing the training of MoE models, understanding the impact of MoE on model interpretability, and balancing the trade-offs between compute performance when scaling vision-language models.
arXiv Detail & Related papers (2023-03-13T16:00:31Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
Large language models (LLMs) have led to a series of breakthroughs in natural language processing (NLP)
What further sets these models apart is the massive amounts of world knowledge they internalize during pretraining.
How the model's world knowledge interacts with the factual information presented in the context remains under explored.
arXiv Detail & Related papers (2022-11-09T18:58:29Z) - Anti-Retroactive Interference for Lifelong Learning [65.50683752919089]
We design a paradigm for lifelong learning based on meta-learning and associative mechanism of the brain.
It tackles the problem from two aspects: extracting knowledge and memorizing knowledge.
It is theoretically analyzed that the proposed learning paradigm can make the models of different tasks converge to the same optimum.
arXiv Detail & Related papers (2022-08-27T09:27:36Z) - Cognitive Modeling of Semantic Fluency Using Transformers [6.445605125467574]
We take the first step by predicting human performance in the semantic fluency task (SFT), a well-studied task in cognitive science.
We report preliminary evidence suggesting that, despite obvious implementational differences, TLMs can be used to identify individual differences in human fluency task behaviors.
We discuss the implications of this work for cognitive modeling of knowledge representations.
arXiv Detail & Related papers (2022-08-20T16:48:04Z) - Model-Based Deep Learning: On the Intersection of Deep Learning and
Optimization [101.32332941117271]
Decision making algorithms are used in a multitude of different applications.
Deep learning approaches that use highly parametric architectures tuned from data without relying on mathematical models are becoming increasingly popular.
Model-based optimization and data-centric deep learning are often considered to be distinct disciplines.
arXiv Detail & Related papers (2022-05-05T13:40:08Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
We focus on advancing the state-of-the-art in interpreting multimodal models.
Our proposed approach, DIME, enables accurate and fine-grained analysis of multimodal models.
arXiv Detail & Related papers (2022-03-03T20:52:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.