Experimental Multi-state Quantum Discrimination in the Frequency Domain
with Quantum Dot Light
- URL: http://arxiv.org/abs/2209.08324v1
- Date: Sat, 17 Sep 2022 12:59:09 GMT
- Title: Experimental Multi-state Quantum Discrimination in the Frequency Domain
with Quantum Dot Light
- Authors: Alessandro Laneve, Michele B. Rota, Francesco Basso Basset, Nicola P.
Fiorente, Tobias M. Krieger, Saimon F. Covre da Silva, Quirin Buchinger,
Sandra Stroj, Sven Hoefling, Tobias Huber-Loyola, Armando Rastelli, Rinaldo
Trotta, and Paolo Mataloni
- Abstract summary: In this work, we present the experimental realization of a protocol employing a time-multiplexing strategy to optimally discriminate among eight non-orthogonal states.
The experiment was built on a custom-designed bulk optics analyser setup and single photons generated by a nearly deterministic solid-state source.
Our work paves the way for more complex applications and delivers a novel approach towards high-dimensional quantum encoding and decoding operations.
- Score: 40.96261204117952
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The quest for the realization of effective quantum state discrimination
strategies is of great interest for quantum information technology, as well as
for fundamental studies. Therefore, it is crucial to develop new and more
efficient methods to implement discrimination protocols for quantum states.
Among the others, single photon implementations are more advisable, because of
their inherent security advantage in quantum communication scenarios. In this
work, we present the experimental realization of a protocol employing a
time-multiplexing strategy to optimally discriminate among eight non-orthogonal
states, encoded in the four-dimensional Hilbert space spanning both the
polarization degree of freedom and photon energy. The experiment, built on a
custom-designed bulk optics analyser setup and single photons generated by a
nearly deterministic solid-state source, represents a benchmarking example of
minimum error discrimination with actual quantum states, requiring only linear
optics and two photodetectors to be realized. Our work paves the way for more
complex applications and delivers a novel approach towards high-dimensional
quantum encoding and decoding operations.
Related papers
- Robust Single-Photon Generation for Quantum Information Enabled by Stimulated Adiabatic Rapid Passage [0.0]
We present a robust scheme for the coherent generation of indistinguishable single-photon states with very low photon number coherence.
Our novel approach combines the advantages of adiabatic rapid passage (ARP) and stimulated two-photon excitation (sTPE)
We demonstrate robust quantum light generation while maintaining the prime quantum-optical quality of the emitted light state.
arXiv Detail & Related papers (2024-09-21T02:12:16Z) - A Hybrid Approach to Mitigate Errors in Linear Photonic Bell-State Measurement for Quantum Interconnects [0.0]
We introduce a novel hybrid detection scheme for Bell-state measurement.
We derive explicit fidelities for quantum teleportation and entanglement swapping processes.
This work provides a new tool for linear optics schemes, with applications to quantum state engineering and quantum interconnects.
arXiv Detail & Related papers (2024-06-14T18:00:00Z) - Simulating Gaussian boson sampling quantum computers [68.8204255655161]
We briefly review recent theoretical methods to simulate experimental Gaussian boson sampling networks.
We focus mostly on methods that use phase-space representations of quantum mechanics.
A brief overview of the theory of GBS, recent experiments and other types of methods are also presented.
arXiv Detail & Related papers (2023-08-02T02:03:31Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - Experimental multi-state quantum discrimination through a Quantum
network [63.1241529629348]
We have experimentally implemented two discrimination schemes in a minimum-error scenario based on a receiver featured by a network structure and a dynamical processing of information.
The first protocol achieves binary optimal discrimination, while the second one provides a novel approach to multi-state quantum discrimination, relying on the dynamical features of the network-like receiver.
arXiv Detail & Related papers (2021-07-21T09:26:48Z) - Optimal strategy to certify quantum nonlocality [0.0]
certification of quantum nonlocality plays a central role in practical applications like device-independent quantum cryptography.
We introduce a technique to find a Bell inequality with the largest possible gap between the quantum prediction and the classical local hidden variable limit.
We illustrate our technique by improving the detection of quantum nonlocality from experimental data obtained with weakly entangled photons.
arXiv Detail & Related papers (2021-07-19T19:32:32Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Experimental quantum reading with photon counting [0.0]
We show that quantum advantage is obtained by practical photon-counting measurements combined with a simple maximum-likelihood decision.
Our experimental findings demonstrate that quantum entanglement and simple optics are able to enhance the readout of digital data.
arXiv Detail & Related papers (2020-04-21T18:00:01Z) - Experimental study of continuous variable quantum key distribution [0.22099217573031674]
main technological factors limiting the communication rates of quantum cryptography systems by single photon are mainly related to the choice of the encoding method.
We propose a new reconciliation method based on Turbo codes.
Our method leads to a significant improvement of the protocol security and a large decrease of the QBER.
arXiv Detail & Related papers (2020-02-16T21:50:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.