論文の概要: Adversarial Robustness in Two-Stage Learning-to-Defer: Algorithms and Guarantees
- arxiv url: http://arxiv.org/abs/2502.01027v2
- Date: Fri, 23 May 2025 12:24:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-26 15:51:02.767677
- Title: Adversarial Robustness in Two-Stage Learning-to-Defer: Algorithms and Guarantees
- Title(参考訳): 2段階学習における逆ロバスト性:アルゴリズムと保証
- Authors: Yannis Montreuil, Axel Carlier, Lai Xing Ng, Wei Tsang Ooi,
- Abstract要約: 2段階のL2D(Learning-to-Defer)は、各入力を固定されたメインモデルまたは複数のオフライン専門家のいずれかに割り当てることで、最適なタスクデリゲートを可能にする。
既存のL2Dフレームワークはクリーンな入力を前提としており、クエリ割り当てを操作できる敵の摂動に弱い。
2段階L2Dシステムにおける対向ロバスト性の最初の包括的研究について述べる。
- 参考スコア(独自算出の注目度): 3.6787328174619254
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Two-stage Learning-to-Defer (L2D) enables optimal task delegation by assigning each input to either a fixed main model or one of several offline experts, supporting reliable decision-making in complex, multi-agent environments. However, existing L2D frameworks assume clean inputs and are vulnerable to adversarial perturbations that can manipulate query allocation--causing costly misrouting or expert overload. We present the first comprehensive study of adversarial robustness in two-stage L2D systems. We introduce two novel attack strategie--untargeted and targeted--which respectively disrupt optimal allocations or force queries to specific agents. To defend against such threats, we propose SARD, a convex learning algorithm built on a family of surrogate losses that are provably Bayes-consistent and $(\mathcal{R}, \mathcal{G})$-consistent. These guarantees hold across classification, regression, and multi-task settings. Empirical results demonstrate that SARD significantly improves robustness under adversarial attacks while maintaining strong clean performance, marking a critical step toward secure and trustworthy L2D deployment.
- Abstract(参考訳): 2段階のL2D(Learning-to-Defer)は、固定されたメインモデルまたはいくつかのオフライン専門家のいずれかに各入力を割り当て、複雑なマルチエージェント環境における信頼性の高い意思決定をサポートすることで、最適なタスク委譲を可能にする。
しかし、既存のL2Dフレームワークはクリーンな入力を前提としており、クエリの割り当てを操作できる敵の摂動に弱い。
2段階L2Dシステムにおける対向ロバスト性の最初の包括的研究について述べる。
最適な割り当てを妨害するか、特定のエージェントにクエリを強制するかの2つの新たな攻撃戦略を導入する。
このような脅威に対処するために、我々はSARDを提案する。これは、確実にベイズ一貫性があり、$(\mathcal{R}, \mathcal{G})$-一貫性を持つサロゲート損失の族の上に構築された凸学習アルゴリズムである。
これらの保証は、分類、回帰、マルチタスク設定にわたって保持される。
実証実験の結果、SARDは強力なクリーンな性能を維持しつつ、敵の攻撃下での堅牢性を著しく改善し、安全で信頼性の高いL2Dデプロイメントに向けた重要なステップであることが示された。
関連論文リスト
- Improving LLM Safety Alignment with Dual-Objective Optimization [65.41451412400609]
大規模言語モデル(LLM)の既存のトレーニング時間安全アライメント技術は、ジェイルブレイク攻撃に対して脆弱なままである。
本研究では,DPOの目的を2つの構成要素にまとめる安全アライメントの改善について提案する。(1) 安全でない世代が部分的に発生しても拒否を促す頑健な拒絶訓練,(2) 有害な知識の未学習。
論文 参考訳(メタデータ) (2025-03-05T18:01:05Z) - A Two-Stage Learning-to-Defer Approach for Multi-Task Learning [3.4289478404209826]
分類タスクと回帰タスクを共同で扱うマルチタスク学習のための新しい2段階学習フレームワークを提案する。
我々は,分類と回帰が密結合した物体検出,電子健康記録解析の2つの課題に対して,我々の枠組みを検証した。
論文 参考訳(メタデータ) (2024-10-21T07:44:57Z) - Efficient Adversarial Training in LLMs with Continuous Attacks [99.5882845458567]
大規模言語モデル(LLM)は、安全ガードレールをバイパスできる敵攻撃に対して脆弱である。
本稿では,2つの損失からなる高速対向訓練アルゴリズム(C-AdvUL)を提案する。
C-AdvIPOは、対向的に堅牢なアライメントのためのユーティリティデータを必要としない、対向型のIPOである。
論文 参考訳(メタデータ) (2024-05-24T14:20:09Z) - Enhancing Infrared Small Target Detection Robustness with Bi-Level
Adversarial Framework [61.34862133870934]
本稿では,異なる汚職の存在下での検出の堅牢性を促進するために,二段階の対向的枠組みを提案する。
我々の手法は広範囲の汚職で21.96%のIOUを著しく改善し、特に一般ベンチマークで4.97%のIOUを推進している。
論文 参考訳(メタデータ) (2023-09-03T06:35:07Z) - Doubly Robust Instance-Reweighted Adversarial Training [107.40683655362285]
本稿では,2重のインスタンス再重み付き対向フレームワークを提案する。
KL偏差正規化損失関数の最適化により重みを求める。
提案手法は, 平均ロバスト性能において, 最先端のベースライン法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-08-01T06:16:18Z) - Towards Adversarial Realism and Robust Learning for IoT Intrusion
Detection and Classification [0.0]
IoT(Internet of Things)は、重大なセキュリティ上の課題に直面している。
敵の攻撃による脅威の増大は、信頼できる防衛戦略の必要性を回復させる。
本研究は、敵のサイバー攻撃事例が現実的であるために必要な制約の種類について述べる。
論文 参考訳(メタデータ) (2023-01-30T18:00:28Z) - Resisting Adversarial Attacks in Deep Neural Networks using Diverse
Decision Boundaries [12.312877365123267]
深層学習システムは、人間の目には認識できないが、モデルが誤分類される可能性がある、人工的な敵の例に弱い。
我々は,オリジナルモデルに対する多様な決定境界を持つディフェンダーモデルを構築するための,アンサンブルに基づく新しいソリューションを開発した。
我々は、MNIST、CIFAR-10、CIFAR-100といった標準画像分類データセットを用いて、最先端の敵攻撃に対する広範な実験を行った。
論文 参考訳(メタデータ) (2022-08-18T08:19:26Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
半教師付きドメイン適応 (SSDA) は,1) アノテーションの低いデータに過度に適合する手法と,2) ドメイン間の分散シフトの両方を克服しなければならない課題である。
SSLとDAの協調を正規化するための適応型構造学習手法を提案する。
論文 参考訳(メタデータ) (2021-12-12T06:11:16Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
敵対的な例は、ディープニューラルネットワーク(DNN)ベースの視覚システムにおいて破滅的な誤りを引き起こす可能性がある。
本稿では,入力空間における自己教師型対向学習機構を提案する。
これは、反逆攻撃に対する強力な堅牢性を提供する。
論文 参考訳(メタデータ) (2020-06-08T20:42:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。