論文の概要: WonderHuman: Hallucinating Unseen Parts in Dynamic 3D Human Reconstruction
- arxiv url: http://arxiv.org/abs/2502.01045v1
- Date: Mon, 03 Feb 2025 04:43:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 14:56:50.052739
- Title: WonderHuman: Hallucinating Unseen Parts in Dynamic 3D Human Reconstruction
- Title(参考訳): WonderHuman: ダイナミックな3D人間の再構築で目に見えない部品を幻覚させる
- Authors: Zilong Wang, Zhiyang Dou, Yuan Liu, Cheng Lin, Xiao Dong, Yunhui Guo, Chenxu Zhang, Xin Li, Wenping Wang, Xiaohu Guo,
- Abstract要約: 我々はWonderHumanをモノクラービデオから再構成し、高忠実なノベルビューの合成を行う。
提案手法は,与えられたモノクロ映像からフォトリアリスティックなレンダリングを生成する場合のSOTA性能を実現する。
- 参考スコア(独自算出の注目度): 51.22641018932625
- License:
- Abstract: In this paper, we present WonderHuman to reconstruct dynamic human avatars from a monocular video for high-fidelity novel view synthesis. Previous dynamic human avatar reconstruction methods typically require the input video to have full coverage of the observed human body. However, in daily practice, one typically has access to limited viewpoints, such as monocular front-view videos, making it a cumbersome task for previous methods to reconstruct the unseen parts of the human avatar. To tackle the issue, we present WonderHuman, which leverages 2D generative diffusion model priors to achieve high-quality, photorealistic reconstructions of dynamic human avatars from monocular videos, including accurate rendering of unseen body parts. Our approach introduces a Dual-Space Optimization technique, applying Score Distillation Sampling (SDS) in both canonical and observation spaces to ensure visual consistency and enhance realism in dynamic human reconstruction. Additionally, we present a View Selection strategy and Pose Feature Injection to enforce the consistency between SDS predictions and observed data, ensuring pose-dependent effects and higher fidelity in the reconstructed avatar. In the experiments, our method achieves SOTA performance in producing photorealistic renderings from the given monocular video, particularly for those challenging unseen parts. The project page and source code can be found at https://wyiguanw.github.io/WonderHuman/.
- Abstract(参考訳): 本稿では,モノクラービデオから動的ヒトアバターを再構成し,高忠実度ノベルビュー合成を行うWonderHumanを提案する。
以前の動的な人間のアバター再構成法は、通常、観察された人間の身体を完全にカバーするために入力ビデオを必要とする。
しかし、日常的な実践では、単眼のフロントビデオのような限られた視点にアクセスできるのが一般的であり、人間のアバターの見えない部分を再構築する以前の方法にとって面倒な作業である。
この問題に対処するために、WonderHumanは2D生成拡散モデルを利用して、モノクロビデオから人間の動力学的アバターを高精度に再現する。
本手法では, 視覚的整合性を確保し, 動的再構成におけるリアリズムを高めるために, SDS (Score Distillation Sampling) を標準空間と観測空間の両方に適用する2次元空間最適化手法を提案する。
さらに、SDS予測と観測データとの整合性を強制し、ポーズ依存効果と再構成アバターの忠実度を高めるために、ビュー選択戦略とポース・フィーチャー・インジェクションを提案する。
実験では, 与えられたモノクロ映像から写実的レンダリングを生成する場合, 特に難易度の高い部品に対してSOTA性能を実現する。
プロジェクトページとソースコードはhttps://wyiguanw.github.io/WonderHuman/にある。
関連論文リスト
- MultiPly: Reconstruction of Multiple People from Monocular Video in the Wild [32.6521941706907]
モノクラーインザワイルドビデオから3Dで複数の人物を再構成する新しいフレームワークであるMultiPlyを提案する。
まず、シーン全体の階層化されたニューラル表現を定義し、個々の人間と背景モデルで合成する。
階層化可能なボリュームレンダリングを通じて,ビデオから階層化ニューラル表現を学習する。
論文 参考訳(メタデータ) (2024-06-03T17:59:57Z) - Deformable 3D Gaussian Splatting for Animatable Human Avatars [50.61374254699761]
本稿では,デジタルアバターを単一単分子配列で構築する手法を提案する。
ParDy-Humanは、リアルなダイナミックな人間のアバターの明示的なモデルを構成する。
当社のアバター学習には,Splatマスクなどの追加アノテーションが不要であり,ユーザのハードウェア上でも,フル解像度の画像を効率的に推測しながら,さまざまなバックグラウンドでトレーニングすることが可能である。
論文 参考訳(メタデータ) (2023-12-22T20:56:46Z) - SiTH: Single-view Textured Human Reconstruction with Image-Conditioned Diffusion [35.73448283467723]
SiTHは、イメージ条件付き拡散モデルと3Dメッシュ再構築ワークフローを統合する、新しいパイプラインである。
我々は、入力画像に基づいて、見えないバックビューの外観を幻覚させるために、強力な生成拡散モデルを用いる。
後者では,入力画像とバックビュー画像から全身のテクスチャメッシュを復元するためのガイダンスとして,肌付きボディーメッシュを利用する。
論文 参考訳(メタデータ) (2023-11-27T14:22:07Z) - Humans in 4D: Reconstructing and Tracking Humans with Transformers [72.50856500760352]
我々は、人間を再構築し、時間とともに追跡するアプローチを提案する。
このアプローチの中核として、人間のメッシュリカバリのためのネットワークの完全な"トランスフォーマライズ"バージョンを提案する。
このネットワークであるHMR 2.0は、芸術の状態を前進させ、過去に1枚の画像から再構成することが困難であった異常なポーズを分析する能力を示す。
論文 参考訳(メタデータ) (2023-05-31T17:59:52Z) - Vid2Avatar: 3D Avatar Reconstruction from Videos in the Wild via
Self-supervised Scene Decomposition [40.46674919612935]
Vid2Avatarは、モノクラー・イン・ザ・ワイルドビデオから人間のアバターを学習する手法である。
提案手法は,大規模な人間のスキャンデータから抽出した基礎的監督や先行データを必要としない。
シーンの人間と背景の両方を共同でモデル化することで、シーンの分解と表面の再構築を3Dで直接行う。
論文 参考訳(メタデータ) (2023-02-22T18:59:17Z) - AvatarGen: a 3D Generative Model for Animatable Human Avatars [108.11137221845352]
アバタージェネレーション(AvatarGen)は、多様な外観を持つ非剛体世代だけでなく、ポーズや視点の完全な制御を可能にする最初の方法である。
非剛性力学をモデル化するために、正準空間におけるポーズ依存的な変形を学習するための変形ネットワークを導入する。
提案手法は,高品質な外観と幾何モデルを備えたアニマタブルな人体アバターを生成でき,従来の3D GANよりも大幅に優れていた。
論文 参考訳(メタデータ) (2022-08-01T01:27:02Z) - Human Performance Capture from Monocular Video in the Wild [50.34917313325813]
本研究では,挑戦的な身体ポーズを特徴とするモノクロ映像から動的3次元人体形状をキャプチャする手法を提案する。
本手法は,現在開発中の3DPWビデオデータセットにおいて,最先端の手法よりも優れる。
論文 参考訳(メタデータ) (2021-11-29T16:32:41Z) - Animatable Neural Radiance Fields from Monocular RGB Video [72.6101766407013]
単眼ビデオからの詳細な人体アバター作成のためのアニマタブル神経放射場について述べる。
我々のアプローチは、明示的なポーズ誘導変形を導入することで、人間の動きを伴う動的シーンに神経放射場を拡大する。
実験の結果, 提案手法は, 1) 質の高い細部を持つ暗黙の人間の形状と外観の復元, 2) 任意の視点からの人間の写真リアルなレンダリング, 3) 任意のポーズを持つ人間のアニメーションを実現する。
論文 参考訳(メタデータ) (2021-06-25T13:32:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。