論文の概要: The Jumping Reasoning Curve? Tracking the Evolution of Reasoning Performance in GPT-[n] and o-[n] Models on Multimodal Puzzles
- arxiv url: http://arxiv.org/abs/2502.01081v2
- Date: Wed, 21 May 2025 07:57:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-22 15:42:57.341857
- Title: The Jumping Reasoning Curve? Tracking the Evolution of Reasoning Performance in GPT-[n] and o-[n] Models on Multimodal Puzzles
- Title(参考訳): GPT-[n] と o-[n] モデルにおける共振性能の進化の追跡
- Authors: Vernon Y. H. Toh, Yew Ken Chia, Deepanway Ghosal, Soujanya Poria,
- Abstract要約: OpenAIのo-[n]シリーズ(o1、o3、o4-mini)のリリースは、大規模言語モデルにおける重要なパラダイムシフトである。
GPT-[n] および o-[n] 級数モデルの進化を、挑戦的なマルチモーダルパズル上で追跡する。
以上の結果から, o-[n] 級数,特に o3 や o4-mini のような後続の反復は GPT-[n] 級数を著しく上回り,マルチモーダル推論において高いスケーラビリティを示すことが明らかとなった。
- 参考スコア(独自算出の注目度): 29.214813685163218
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The releases of OpenAI's o-[n] series, such as o1, o3, and o4-mini, mark a significant paradigm shift in Large Language Models towards advanced reasoning capabilities. Notably, models like o3 have demonstrated strong performance on benchmarks like the Abstraction and Reasoning Corpus for Artificial General Intelligence (ARC-AGI). However, this benchmark is limited to symbolic patterns, whereas humans often perceive and reason about multimodal scenarios involving both vision and language data. Thus, there is an urgent need to investigate advanced reasoning capabilities in multimodal tasks. To this end, we track the evolution of the GPT-[n] and o-[n] series models (including o1, o3, and o4-mini) on challenging multimodal puzzles from PuzzleVQA and AlgoPuzzleVQA, which demand fine-grained visual perception. Our results reveal that o-[n] series, particularly later iterations like o3 and o4-mini, significantly outperform the GPT-[n] series and show strong scalability in multimodal reasoning. Nonetheless, despite these substantial advancements and the superior capabilities demonstrated by the o-[n] series, our findings highlight that even these leading models face persistent challenges. Difficulties are particularly evident in tasks requiring precise visual perception, robust compositional reasoning across multiple visual attributes, and solving complex algorithmic or highly combinatorial puzzles, indicating critical areas for future AGI development. We plan to continuously track new models in the series and update our results in this paper accordingly. All resources used in this evaluation are openly available at https://github.com/declare-lab/LLM-PuzzleTest.
- Abstract(参考訳): OpenAIのo-[n]シリーズ(o1、o3、o4-mini)のリリースは、大規模言語モデルにおける高度な推論能力への重要なパラダイムシフトを象徴している。
特に、o3のようなモデルは、ARC-AGI (Abstraction and Reasoning Corpus for Artificial General Intelligence)のようなベンチマークで強力なパフォーマンスを示している。
しかしながら、このベンチマークは象徴的なパターンに限られているが、人間はしばしば視覚と言語データの両方を含むマルチモーダルシナリオを知覚し、推論する。
したがって、マルチモーダルタスクにおける高度な推論能力の調査が急務である。
この目的のために、我々は、細かな視覚知覚を必要とするPuzzleVQAとAlgoPuzzleVQAのマルチモーダルパズルに対するGPT-[n]およびo-[n]級モデルの進化(o1、o3、o4-miniを含む)を追跡する。
以上の結果から, o-[n] 級数,特に o3 や o4-mini のような後続の反復は GPT-[n] 級数を著しく上回り,マルチモーダル推論において高いスケーラビリティを示すことが明らかとなった。
にもかかわらず、これらの大きな進歩と、o-[n]シリーズで実証された優れた能力にもかかわらず、これらの主要なモデルでさえ永続的な課題に直面している。
難易度は、正確な視覚知覚、複数の視覚属性にわたる堅牢な構成推論、複雑なアルゴリズムまたは高度に組み合わせたパズルの解決を必要とするタスクにおいて特に顕著であり、将来のAGI開発にとって重要な領域を示す。
シリーズ内の新しいモデルを継続的に追跡し、本論文の結果を更新する予定です。
この評価で使用されるすべてのリソースはhttps://github.com/declare-lab/LLM-PuzzleTestで公開されている。
関連論文リスト
- OpenVLThinker: An Early Exploration to Complex Vision-Language Reasoning via Iterative Self-Improvement [91.88062410741833]
本研究では,類似の推論機能を大規模視覚言語モデル(LVLM)にうまく組み込むことができるか検討する。
本稿では,教師付き微調整(SFT)と強化学習(RL)を反復的に活用し,モデル一般化をさらに改善する手法を検討する。
OpenVLThinkerは、MathVista、MathVerse、MathVisionといった挑戦的なベンチマークで一貫して改善された推論性能を示すLVLMである。
論文 参考訳(メタデータ) (2025-03-21T17:52:43Z) - Mitigating Visual Forgetting via Take-along Visual Conditioning for Multi-modal Long CoT Reasoning [53.790502697674754]
本稿では、画像入力を重要な推論段階に移行する戦略であるTake-Allong Visual Conditioning (TVC)を提案する。
TVCは、推論を通して視覚的なコンポーネントへの注意を維持するのに役立つ。
提案手法は,5つの数学的推論ベンチマークにおいて,最先端の性能を平均で達成する。
論文 参考訳(メタデータ) (2025-03-17T16:45:12Z) - FINEREASON: Evaluating and Improving LLMs' Deliberate Reasoning through Reflective Puzzle Solving [90.88021670297664]
FINEREASONは、大規模言語モデルの推論能力を評価するための論理パズルベンチマークである。
状態チェックと状態遷移という2つのタスクを導入し、モデルが現在の状況をどのように評価するかを総合的に評価し、次の動きを計画する。
状態チェックと遷移データに基づいてトレーニングされたモデルでは、GSM8Kで最大5.1%の精度で数学推論が向上することを示す。
論文 参考訳(メタデータ) (2025-02-27T16:23:25Z) - A Comparative Study on Reasoning Patterns of OpenAI's o1 Model [69.08287909042421]
OpenAIのo1モデルは、ほとんどのデータセットで最高のパフォーマンスを実現しています。
また、いくつかの推論ベンチマークについて詳細な分析を行う。
論文 参考訳(メタデータ) (2024-10-17T15:09:03Z) - Reasoning Paths Optimization: Learning to Reason and Explore From Diverse Paths [69.39559168050923]
本稿では,多様な経路から学習の推論と探索を可能にするReasoning Paths Optimization (RPO)を紹介する。
提案手法は,各推論ステップにおいて好意的な分岐を奨励し,好ましくない分岐を罰し,モデル全体の問題解決性能を高める。
我々は,数語問題や理科ベースの試験問題など,多段階の推論タスクに焦点をあてる。
論文 参考訳(メタデータ) (2024-10-07T06:37:25Z) - PuzzleVQA: Diagnosing Multimodal Reasoning Challenges of Language Models with Abstract Visual Patterns [69.17409440805498]
基本概念に基づいた抽象パターンを用いた大規模マルチモーダルモデルの評価を行った。
単純な抽象パターンをうまく一般化できないことが分かりました。
系統解析の結果, GPT-4Vの主なボトルネックは視覚知覚の弱さと誘導的推論能力であることがわかった。
論文 参考訳(メタデータ) (2024-03-20T05:37:24Z) - REBUS: A Robust Evaluation Benchmark of Understanding Symbols [1.90463290938268]
GPT-4oは他の全てのモデルよりも大幅に優れ、続いてプロプライエタリなモデルも他の評価モデルよりも優れていた。
最高のモデルでさえ、最終的な精度はわずか42%で、ハードパズルでは7%に低下する。
したがって、我々のベンチマークは、マルチモーダルな大言語モデルの知識と推論における大きな欠点を特定するのに利用できる。
論文 参考訳(メタデータ) (2024-01-11T00:30:28Z) - Deep Non-Monotonic Reasoning for Visual Abstract Reasoning Tasks [3.486683381782259]
本稿では,視覚的抽象的推論課題を解決するための非単調な計算手法を提案する。
このアプローチを使ってディープラーニングモデルを実装し、RavenのProgressive MatricesテストにインスパイアされたデータセットであるRAVENデータセットでそれをテストしました。
論文 参考訳(メタデータ) (2023-02-08T16:35:05Z) - Emergent Analogical Reasoning in Large Language Models [1.5469452301122177]
GPT-3は、多くの設定において、抽象的なパターン誘導、マッチング、さらには人間の能力を超える、驚くほど強力な能力を持っていることを示す。
以上の結果から, GPT-3のような大規模言語モデルでは, 幅広い類似問題に対するゼロショット解を求める能力が得られている。
論文 参考訳(メタデータ) (2022-12-19T00:04:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。