Pulse-PPG: An Open-Source Field-Trained PPG Foundation Model for Wearable Applications Across Lab and Field Settings
- URL: http://arxiv.org/abs/2502.01108v1
- Date: Mon, 03 Feb 2025 06:56:40 GMT
- Title: Pulse-PPG: An Open-Source Field-Trained PPG Foundation Model for Wearable Applications Across Lab and Field Settings
- Authors: Mithun Saha, Maxwell A. Xu, Wanting Mao, Sameer Neupane, James M. Rehg, Santosh Kumar,
- Abstract summary: Photoplethysmography-based foundation models are gaining traction due to their potential to generalize across diverse health applications.
Existing PPG foundation models are either open-source but trained on clinical data or closed-source, limiting their applicability in real-world settings.
We introduce Pulse, the first open-source PPG foundation model trained exclusively on raw PPG data collected over a 100-day field study with 120 participants.
- Score: 15.077834063212704
- License:
- Abstract: Photoplethysmography (PPG)-based foundation models are gaining traction due to the widespread use of PPG in biosignal monitoring and their potential to generalize across diverse health applications. In this paper, we introduce Pulse-PPG, the first open-source PPG foundation model trained exclusively on raw PPG data collected over a 100-day field study with 120 participants. Existing PPG foundation models are either open-source but trained on clinical data or closed-source, limiting their applicability in real-world settings. We evaluate Pulse-PPG across multiple datasets and downstream tasks, comparing its performance against a state-of-the-art foundation model trained on clinical data. Our results demonstrate that Pulse-PPG, trained on uncurated field data, exhibits superior generalization across clinical and mobile health applications in both lab and field settings. This suggests that exposure to real-world variability enables the model to learn fine-grained representations, making it more adaptable across tasks. Furthermore, pre-training on field data surprisingly outperforms its pre-training on clinical data in many tasks, reinforcing the importance of training on real-world, diverse datasets. To encourage further advancements in robust foundation models leveraging field data, we plan to release Pulse-PPG, providing researchers with a powerful resource for developing more generalizable PPG-based models.
Related papers
- Federated Self-supervised Domain Generalization for Label-efficient Polyp Segmentation [12.12743798858467]
Federated learning (FL) is a formidable solution to this privacy conundrum.
We propose a Federated self-supervised Domain Generalization method (LFDG) to enhance the generalization capacity of FL.
Our method achieves 3.80% and 3.92% better than the baseline and other recent FL methods and SSL methods, respectively.
arXiv Detail & Related papers (2025-02-11T21:00:01Z) - PaPaGei: Open Foundation Models for Optical Physiological Signals [8.78925327256804]
Photoplethysmography is the leading non-invasive technique for monitoring biosignals and cardiovascular health.
Machine learning models trained on PPG signals tend to be task-specific and struggle with generalization.
We present PaPaGei, the first open foundation model for PPG signals.
arXiv Detail & Related papers (2024-10-27T18:18:06Z) - Beyond Efficiency: Molecular Data Pruning for Enhanced Generalization [30.738229850748137]
MolPeg is a Molecular data Pruning framework for enhanced Generalization.
It focuses on the source-free data pruning scenario, where data pruning is applied with pretrained models.
It consistently outperforms existing DP methods across four downstream tasks.
arXiv Detail & Related papers (2024-09-02T09:06:04Z) - Fully Test-Time rPPG Estimation via Synthetic Signal-Guided Feature Learning [8.901227918730562]
TestTime Adaptation (TTA) enables the model to adaptively estimate r signals in various unseen domains by online adapting to unlabeled target data without referring to any source data.
We develop a synthetic signal-guided feature learning method by pseudo r signals as pseudo ground truths to guide a conditional generator in generating latent r features.
arXiv Detail & Related papers (2024-07-18T09:22:40Z) - Distributionally Robust Alignment for Medical Federated Vision-Language Pre-training Under Data Heterogeneity [4.84693589377679]
We propose Federated Distributionally Robust Alignment (FedDRA) for medical vision-language pre-training.
FedDRA achieves robust vision-language alignment under heterogeneous conditions.
Our method also adapts well to various medical pre-training methods.
arXiv Detail & Related papers (2024-04-05T01:17:25Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
Training open-source small multimodal models (SMMs) to bridge competency gaps for unmet clinical needs in radiology.
For training, we assemble a large dataset of over 697 thousand radiology image-text pairs.
For evaluation, we propose CheXprompt, a GPT-4-based metric for factuality evaluation, and demonstrate its parity with expert evaluation.
The inference of LlaVA-Rad is fast and can be performed on a single V100 GPU in private settings, offering a promising state-of-the-art tool for real-world clinical applications.
arXiv Detail & Related papers (2024-03-12T18:12:02Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
We propose a learnable weight-based hybrid medical image segmentation approach.
Our approach is easy to integrate into any hybrid model and requires no external training data.
Experiments on multi-organ and lung cancer segmentation tasks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-06-15T17:55:05Z) - Textual Data Augmentation for Patient Outcomes Prediction [67.72545656557858]
We propose a novel data augmentation method to generate artificial clinical notes in patients' Electronic Health Records.
We fine-tune the generative language model GPT-2 to synthesize labeled text with the original training data.
We evaluate our method on the most common patient outcome, i.e., the 30-day readmission rate.
arXiv Detail & Related papers (2022-11-13T01:07:23Z) - Weighted Ensembles for Active Learning with Adaptivity [60.84896785303314]
This paper presents an ensemble of GP models with weights adapted to the labeled data collected incrementally.
Building on this novel EGP model, a suite of acquisition functions emerges based on the uncertainty and disagreement rules.
An adaptively weighted ensemble of EGP-based acquisition functions is also introduced to further robustify performance.
arXiv Detail & Related papers (2022-06-10T11:48:49Z) - An Empirical Study on Distribution Shift Robustness From the Perspective
of Pre-Training and Data Augmentation [91.62129090006745]
This paper studies the distribution shift problem from the perspective of pre-training and data augmentation.
We provide the first comprehensive empirical study focusing on pre-training and data augmentation.
arXiv Detail & Related papers (2022-05-25T13:04:53Z) - Unsupervised Pre-Training on Patient Population Graphs for Patient-Level
Predictions [48.02011627390706]
Pre-training has shown success in different areas of machine learning, such as Computer Vision (CV), Natural Language Processing (NLP) and medical imaging.
In this paper, we apply unsupervised pre-training to heterogeneous, multi-modal EHR data for patient outcome prediction.
We find that our proposed graph based pre-training method helps in modeling the data at a population level.
arXiv Detail & Related papers (2022-03-23T17:59:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.