Distributionally Robust Alignment for Medical Federated Vision-Language Pre-training Under Data Heterogeneity
- URL: http://arxiv.org/abs/2404.03854v3
- Date: Thu, 21 Nov 2024 21:08:40 GMT
- Title: Distributionally Robust Alignment for Medical Federated Vision-Language Pre-training Under Data Heterogeneity
- Authors: Zitao Shuai, Chenwei Wu, Zhengxu Tang, Liyue Shen,
- Abstract summary: We propose Federated Distributionally Robust Alignment (FedDRA) for medical vision-language pre-training.
FedDRA achieves robust vision-language alignment under heterogeneous conditions.
Our method also adapts well to various medical pre-training methods.
- Score: 4.84693589377679
- License:
- Abstract: Vision-language pre-training (VLP) has emerged as an effective scheme for multimodal representation learning, but its reliance on large-scale multimodal data poses significant challenges for medical applications. Federated learning (FL) offers a promising solution to scale up the dataset for medical VLP while preserving data privacy. However, we observe that client data heterogeneity in real-world scenarios could cause models to learn biased cross-modal alignment during local pre-training. This would limit the transferability of the federally learned representation model on downstream tasks. To address this challenge, we propose Federated Distributionally Robust Alignment (FedDRA), a framework for federated VLP that achieves robust vision-language alignment under heterogeneous conditions. Based on client datasets, we construct a distribution family that encompasses potential test-time domains, and apply a distributionally robust framework to optimize the pre-trained model's performance across this distribution space. This approach bridges the gap between pre-training samples and downstream applications. To avoid over-fitting on client-specific information, we use anchor representation from the global model to guide the local training, and adopt a two-stage approach to first tune deeper layers before updating the entire network. Extensive experiments on real-world datasets demonstrate FedDRA's effectiveness in enhancing medical federated VLP under data heterogeneity. Our method also adapts well to various medical pre-training methods.
Related papers
- Federated Impression for Learning with Distributed Heterogeneous Data [19.50235109938016]
Federated learning (FL) provides a paradigm that can learn from distributed datasets across clients without requiring them to share data.
In FL, sub-optimal convergence is common among data from different health centers due to the variety in data collection protocols and patient demographics across centers.
We propose FedImpres which alleviates catastrophic forgetting by restoring synthetic data that represents the global information as federated impression.
arXiv Detail & Related papers (2024-09-11T15:37:52Z) - FedMRL: Data Heterogeneity Aware Federated Multi-agent Deep Reinforcement Learning for Medical Imaging [12.307490659840845]
We introduce FedMRL, a novel multi-agent deep reinforcement learning framework designed to address data heterogeneity.
FedMRL incorporates a novel loss function to facilitate fairness among clients, preventing bias in the final global model.
We assess our approach using two publicly available real-world medical datasets, and the results demonstrate that FedMRL significantly outperforms state-of-the-art techniques.
arXiv Detail & Related papers (2024-07-08T10:10:07Z) - Vertical Federated Learning Hybrid Local Pre-training [4.31644387824845]
We propose a novel VFL Hybrid Local Pre-training (VFLHLP) approach for Vertical Federated Learning (VFL)
VFLHLP first pre-trains local networks on the local data of participating parties.
Then it utilizes these pre-trained networks to adjust the sub-model for the labeled party or enhance representation learning for other parties during downstream federated learning on aligned data.
arXiv Detail & Related papers (2024-05-20T08:57:39Z) - FedImpro: Measuring and Improving Client Update in Federated Learning [77.68805026788836]
Federated Learning (FL) models often experience client drift caused by heterogeneous data.
We present an alternative perspective on client drift and aim to mitigate it by generating improved local models.
arXiv Detail & Related papers (2024-02-10T18:14:57Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - Tackling Computational Heterogeneity in FL: A Few Theoretical Insights [68.8204255655161]
We introduce and analyse a novel aggregation framework that allows for formalizing and tackling computational heterogeneous data.
Proposed aggregation algorithms are extensively analyzed from a theoretical, and an experimental prospective.
arXiv Detail & Related papers (2023-07-12T16:28:21Z) - Integrating Local Real Data with Global Gradient Prototypes for
Classifier Re-Balancing in Federated Long-Tailed Learning [60.41501515192088]
Federated Learning (FL) has become a popular distributed learning paradigm that involves multiple clients training a global model collaboratively.
The data samples usually follow a long-tailed distribution in the real world, and FL on the decentralized and long-tailed data yields a poorly-behaved global model.
In this work, we integrate the local real data with the global gradient prototypes to form the local balanced datasets.
arXiv Detail & Related papers (2023-01-25T03:18:10Z) - Federated Multilingual Models for Medical Transcript Analysis [11.877236847857336]
We present a federated learning system for training a large-scale multi-lingual model.
None of the training data is ever transmitted to any central location.
We show that the global model performance can be further improved by a training step performed locally.
arXiv Detail & Related papers (2022-11-04T01:07:54Z) - Label-Efficient Self-Supervised Federated Learning for Tackling Data
Heterogeneity in Medical Imaging [23.08596805950814]
We present a robust and label-efficient self-supervised FL framework for medical image analysis.
Specifically, we introduce a novel distributed self-supervised pre-training paradigm into the existing FL pipeline.
We show that our self-supervised FL algorithm generalizes well to out-of-distribution data and learns federated models more effectively in limited label scenarios.
arXiv Detail & Related papers (2022-05-17T18:33:43Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
federated learning has emerged as a promising approach for training a global model using data from multiple organizations without leaking their raw data.
We propose a general framework to solve the above two challenges simultaneously.
We provide comprehensive theoretical analysis including robustness analysis, convergence analysis, and generalization ability.
arXiv Detail & Related papers (2022-04-16T08:08:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.